{"id":"https://openalex.org/W4224919673","doi":"https://doi.org/10.1109/icassp43922.2022.9746641","title":"Importance Sampling Cams For Weakly-Supervised Segmentation","display_name":"Importance Sampling Cams For Weakly-Supervised Segmentation","publication_year":2022,"publication_date":"2022-04-27","ids":{"openalex":"https://openalex.org/W4224919673","doi":"https://doi.org/10.1109/icassp43922.2022.9746641"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp43922.2022.9746641","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2203.12459","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083410485","display_name":"Arvi Jonnarth","orcid":"https://orcid.org/0000-0002-3434-2522"},"institutions":[{"id":"https://openalex.org/I2801875454","display_name":"Husqvarna (Sweden)","ror":"https://ror.org/02ayh6y70","country_code":"SE","type":"company","lineage":["https://openalex.org/I2801875454"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Arvi Jonnarth","raw_affiliation_strings":["Husqvarna Group, Huskvarna, Sweden"],"affiliations":[{"raw_affiliation_string":"Husqvarna Group, Huskvarna, Sweden","institution_ids":["https://openalex.org/I2801875454"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5042087981","display_name":"Michael Felsberg","orcid":"https://orcid.org/0000-0002-6096-3648"},"institutions":[{"id":"https://openalex.org/I95023434","display_name":"University of KwaZulu-Natal","ror":"https://ror.org/04qzfn040","country_code":"ZA","type":"education","lineage":["https://openalex.org/I95023434"]}],"countries":["ZA"],"is_corresponding":false,"raw_author_name":"Michael Felsberg","raw_affiliation_strings":["the University of KwaZulu-Natal, Durban, South Africa"],"affiliations":[{"raw_affiliation_string":"the University of KwaZulu-Natal, Durban, South Africa","institution_ids":["https://openalex.org/I95023434"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.642,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":4,"citation_normalized_percentile":{"value":0.999875,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":80,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.8254705},{"id":"https://openalex.org/keywords/pascal","display_name":"Pascal (unit)","score":0.78232276},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.569944},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.5291612},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.47001365},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.45814604}],"concepts":[{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.8254705},{"id":"https://openalex.org/C75608658","wikidata":"https://www.wikidata.org/wiki/Q44395","display_name":"Pascal (unit)","level":2,"score":0.78232276},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.75235474},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72151196},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.69794756},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.569944},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.5291612},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5155289},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.48163572},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.47001365},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.45814604},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.4453446},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.4228877},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.419497},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.41946447},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.412728},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36242428},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp43922.2022.9746641","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.12459","pdf_url":"https://arxiv.org/pdf/2203.12459","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.12459","pdf_url":"https://arxiv.org/pdf/2203.12459","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.78}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1495267108","https://openalex.org/W1686810756","https://openalex.org/W1783315696","https://openalex.org/W1821462560","https://openalex.org/W1923697677","https://openalex.org/W1994488211","https://openalex.org/W1995944048","https://openalex.org/W2031489346","https://openalex.org/W2041625018","https://openalex.org/W2133515615","https://openalex.org/W2144794286","https://openalex.org/W2194775991","https://openalex.org/W2221898772","https://openalex.org/W2294370754","https://openalex.org/W2295107390","https://openalex.org/W2306289963","https://openalex.org/W2337429362","https://openalex.org/W2340897893","https://openalex.org/W2470139095","https://openalex.org/W2552414813","https://openalex.org/W2558580397","https://openalex.org/W2798376494","https://openalex.org/W2798715809","https://openalex.org/W2928165649","https://openalex.org/W2952793010","https://openalex.org/W2962758679","https://openalex.org/W2962858109","https://openalex.org/W2962867364","https://openalex.org/W2980189057","https://openalex.org/W2982093251","https://openalex.org/W2991083560","https://openalex.org/W3034930876","https://openalex.org/W3083765505","https://openalex.org/W3085685449","https://openalex.org/W3100040694","https://openalex.org/W3102714038","https://openalex.org/W3113303810","https://openalex.org/W3132455321","https://openalex.org/W4289367614"],"related_works":["https://openalex.org/W4389116644","https://openalex.org/W4205463238","https://openalex.org/W3103844505","https://openalex.org/W2965546495","https://openalex.org/W2761785940","https://openalex.org/W259157601","https://openalex.org/W2565656575","https://openalex.org/W2153315159","https://openalex.org/W2110523656","https://openalex.org/W1482209366"],"abstract_inverted_index":{"Classification":[0],"networks":[1,24],"can":[2],"be":[3],"used":[4],"to":[5,27,36,74,102,126,143],"localize":[6],"and":[7,34],"segment":[8],"objects":[9],"in":[10,82,109,135,147],"images":[11],"by":[12,71],"means":[13],"of":[14,90,137,149],"class":[15,78],"activation":[16],"maps":[17],"(CAMs).":[18],"However,":[19],"without":[20,40],"pixel-level":[21],"annotations,":[22],"classification":[23],"are":[25],"known":[26],"(1)":[28],"mainly":[29],"focus":[30],"on":[31,64,119],"discriminative":[32],"regions,":[33],"(2)":[35],"produce":[37,75],"diffuse":[38],"CAMs":[39,73,83],"well-defined":[41],"prediction":[42,105],"contours.":[43],"In":[44],"this":[45],"work,":[46],"we":[47,59,93,116],"approach":[48],"both":[49],"problems":[50],"with":[51,107],"two":[52],"contributions":[53],"for":[54],"improving":[55],"CAM":[56],"learning.":[57],"First,":[58],"incorporate":[60],"importance":[61],"sampling":[62],"based":[63],"the":[65,72,104,110,120,133],"class-wise":[66],"probability":[67],"mass":[68],"function":[69],"induced":[70],"stochastic":[76],"image-level":[77],"predictions.":[79],"This":[80],"results":[81],"which":[84,100],"activate":[85],"over":[86],"a":[87,95,113],"larger":[88],"extent":[89],"objects.":[91],"Second,":[92],"formulate":[94],"feature":[96],"similarity":[97],"loss":[98],"term":[99],"aims":[101],"match":[103],"contours":[106],"edges":[108],"image.":[111],"As":[112],"third":[114],"contribution,":[115],"conduct":[117],"experiments":[118],"PASCAL":[121],"VOC":[122],"2012":[123],"benchmark":[124],"dataset":[125],"demonstrate":[127],"that":[128],"these":[129],"modifications":[130],"significantly":[131],"increase":[132],"performance":[134],"terms":[136,148],"contour":[138],"accuracy,":[139],"while":[140],"being":[141],"comparable":[142],"current":[144],"state-of-the-art":[145],"methods":[146],"region":[150],"similarity.":[151]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4224919673","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-14T19:47:35.789085","created_date":"2022-04-28"}