{"id":"https://openalex.org/W3015783870","doi":"https://doi.org/10.1109/icassp40776.2020.9054006","title":"Cell-Phone Classification: A Convolutional Neural Network Approach Exploiting Electromagnetic Emanations","display_name":"Cell-Phone Classification: A Convolutional Neural Network Approach Exploiting Electromagnetic Emanations","publication_year":2020,"publication_date":"2020-04-09","ids":{"openalex":"https://openalex.org/W3015783870","doi":"https://doi.org/10.1109/icassp40776.2020.9054006","mag":"3015783870"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp40776.2020.9054006","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5089665637","display_name":"Baki Berkay Yilmaz","orcid":"https://orcid.org/0000-0001-6796-5112"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Baki Berkay Yilmaz","raw_affiliation_strings":["School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022670665","display_name":"Elvan Mert Ugurlu","orcid":"https://orcid.org/0000-0003-4749-3327"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Elvan Mert Ugurlu","raw_affiliation_strings":["School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018695384","display_name":"Alenka Zaji\u0107","orcid":"https://orcid.org/0000-0003-1158-3785"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Alenka Zajic","raw_affiliation_strings":["School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5007992397","display_name":"Milos Prvulovi\u0107","orcid":"https://orcid.org/0000-0002-5955-277X"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Milos Prvulovic","raw_affiliation_strings":["School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA","institution_ids":["https://openalex.org/I130701444"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.303,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.531325,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"2862","last_page":"2866"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10951","display_name":"Cryptographic Implementations and Security","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10951","display_name":"Cryptographic Implementations and Security","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11017","display_name":"Chaos-based Image/Signal Encryption","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pooling","display_name":"Pooling","score":0.6135731},{"id":"https://openalex.org/keywords/spectrogram","display_name":"Spectrogram","score":0.50196075},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.41948375}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.8635862},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7575419},{"id":"https://openalex.org/C70437156","wikidata":"https://www.wikidata.org/wiki/Q7228652","display_name":"Pooling","level":2,"score":0.6135731},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6086797},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.598897},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5852771},{"id":"https://openalex.org/C166386157","wikidata":"https://www.wikidata.org/wiki/Q1477735","display_name":"Short-time Fourier transform","level":4,"score":0.51975864},{"id":"https://openalex.org/C45273575","wikidata":"https://www.wikidata.org/wiki/Q578970","display_name":"Spectrogram","level":2,"score":0.50196075},{"id":"https://openalex.org/C102519508","wikidata":"https://www.wikidata.org/wiki/Q6520159","display_name":"Fourier transform","level":2,"score":0.4965511},{"id":"https://openalex.org/C2778707766","wikidata":"https://www.wikidata.org/wiki/Q202064","display_name":"Phone","level":2,"score":0.47352242},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4594733},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.4559217},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.41948375},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.41751617},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.2288968},{"id":"https://openalex.org/C203024314","wikidata":"https://www.wikidata.org/wiki/Q1365258","display_name":"Fourier analysis","level":3,"score":0.11340952},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09508878},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp40776.2020.9054006","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy","score":0.43}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W125708017","https://openalex.org/W1519539754","https://openalex.org/W1560720671","https://openalex.org/W1587481360","https://openalex.org/W1613874182","https://openalex.org/W1824405704","https://openalex.org/W2013066047","https://openalex.org/W2033755846","https://openalex.org/W2126132644","https://openalex.org/W2133469632","https://openalex.org/W2172060328","https://openalex.org/W2183849663","https://openalex.org/W2295831925","https://openalex.org/W2330270191","https://openalex.org/W2774600468","https://openalex.org/W2956231146","https://openalex.org/W3011112755"],"related_works":["https://openalex.org/W82005754","https://openalex.org/W3210733254","https://openalex.org/W3095343173","https://openalex.org/W2901989338","https://openalex.org/W2533590149","https://openalex.org/W2381036744","https://openalex.org/W2334448276","https://openalex.org/W2323749021","https://openalex.org/W2288135719","https://openalex.org/W2120540196"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,95],"propose":[4],"a":[5,13],"methodology":[6],"to":[7,59,68],"identify":[8],"both":[9],"the":[10,16,53,64,78,107],"brand":[11],"of":[12,18,30,47,52,63],"cell-phone,":[14],"and":[15,35,67,90],"status":[17],"its":[19],"camera":[20],"by":[21,44,87],"exploiting":[22],"electromagnetic":[23],"(EM)":[24],"emanations.":[25],"The":[26,72],"method":[27],"is":[28],"composed":[29],"two":[31,83],"parts:":[32],"Feature":[33],"extraction":[34],"Convolutional":[36],"Neural":[37],"Network":[38],"(CNN).":[39],"We":[40],"first":[41],"extract":[42],"features":[43,74],"averaging":[45],"magnitudes":[46],"short-time":[48],"Fourier":[49],"transform":[50],"(STFT)":[51],"measured":[54],"EM":[55],"signal,":[56],"which":[57,81,99],"helps":[58],"reduce":[60],"input":[61],"dimension":[62],"neural":[65],"network,":[66],"filter":[69],"spurious":[70],"emissions.":[71],"extracted":[73],"are":[75],"fed":[76],"into":[77],"proposed":[79],"CNN,":[80],"contains":[82],"convolutional":[84],"layers":[85],"(followed":[86],"max-pooling":[88],"layers),":[89],"four":[91],"fully-connected":[92],"layers.":[93],"Finally,":[94],"provide":[96],"experimental":[97],"results":[98],"exhibit":[100],"more":[101],"than":[102],"99%":[103],"classification":[104],"accuracy":[105],"for":[106],"test":[108],"signals.":[109]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3015783870","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":3}],"updated_date":"2025-01-17T22:38:38.620631","created_date":"2020-04-17"}