{"id":"https://openalex.org/W3163433893","doi":"https://doi.org/10.1109/icassp39728.2021.9415082","title":"On the Optimality of Backward Regression: Sparse Recovery and Subset Selection","display_name":"On the Optimality of Backward Regression: Sparse Recovery and Subset Selection","publication_year":2021,"publication_date":"2021-05-13","ids":{"openalex":"https://openalex.org/W3163433893","doi":"https://doi.org/10.1109/icassp39728.2021.9415082","mag":"3163433893"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp39728.2021.9415082","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2106.03235","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5079435585","display_name":"Sebastian Ament","orcid":"https://orcid.org/0000-0001-6316-4633"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"funder","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sebastian Ament","raw_affiliation_strings":["Cornell University, Ithaca, NY"],"affiliations":[{"raw_affiliation_string":"Cornell University, Ithaca, NY","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5069030030","display_name":"Carla P. Gomes","orcid":"https://orcid.org/0000-0002-4441-7225"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"funder","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Carla Gomes","raw_affiliation_strings":["Cornell University, Ithaca, NY"],"affiliations":[{"raw_affiliation_string":"Cornell University, Ithaca, NY","institution_ids":["https://openalex.org/I205783295"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.954,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":8,"citation_normalized_percentile":{"value":0.999314,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":83,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"5599","last_page":"5603"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11739","display_name":"Microwave Imaging and Scattering Analysis","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.65966445}],"concepts":[{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.65966445},{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.61428237},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.6078464},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.606833},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.5952771},{"id":"https://openalex.org/C51823790","wikidata":"https://www.wikidata.org/wiki/Q504353","display_name":"Greedy algorithm","level":2,"score":0.59471357},{"id":"https://openalex.org/C32834561","wikidata":"https://www.wikidata.org/wiki/Q660730","display_name":"Subspace topology","level":2,"score":0.54066384},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5185174},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.50899863},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.46182758},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.45381612},{"id":"https://openalex.org/C148764684","wikidata":"https://www.wikidata.org/wiki/Q621751","display_name":"Approximation algorithm","level":2,"score":0.43261153},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.42141393},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.26949137},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.080987096},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp39728.2021.9415082","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2106.03235","pdf_url":"http://arxiv.org/pdf/2106.03235","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2106.03235","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2106.03235","pdf_url":"http://arxiv.org/pdf/2106.03235","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.48,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[{"funder":"https://openalex.org/F4320333591","funder_display_name":"Multidisciplinary University Research Initiative","award_id":null}],"datasets":[],"versions":["https://openalex.org/W3163433893"],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1969423031","https://openalex.org/W1986583171","https://openalex.org/W1993039222","https://openalex.org/W2017761965","https://openalex.org/W2045875109","https://openalex.org/W2058428247","https://openalex.org/W2065829287","https://openalex.org/W2102380305","https://openalex.org/W2111414067","https://openalex.org/W2116148865","https://openalex.org/W2118838680","https://openalex.org/W2144124493","https://openalex.org/W2145096794","https://openalex.org/W2149831484","https://openalex.org/W2155399784","https://openalex.org/W2160979406","https://openalex.org/W2162162155","https://openalex.org/W2171980229","https://openalex.org/W2289917018","https://openalex.org/W2293318283","https://openalex.org/W2567115595","https://openalex.org/W2624699774","https://openalex.org/W2798603777","https://openalex.org/W2894187248","https://openalex.org/W2950794910","https://openalex.org/W2963319203","https://openalex.org/W2963322354","https://openalex.org/W2963674932","https://openalex.org/W3016031910","https://openalex.org/W3098515897","https://openalex.org/W3098539674","https://openalex.org/W4285719527","https://openalex.org/W4300819821","https://openalex.org/W43282915"],"related_works":["https://openalex.org/W3204684126","https://openalex.org/W3117290964","https://openalex.org/W3015194228","https://openalex.org/W2381127329","https://openalex.org/W2379256376","https://openalex.org/W2163115662","https://openalex.org/W2107703637","https://openalex.org/W2045237525","https://openalex.org/W189401716","https://openalex.org/W1594413663"],"abstract_inverted_index":{"Sparse":[0],"recovery":[1,175],"and":[2,15,45,63,134,154,158],"subset":[3,82],"selection":[4,83],"are":[5,104],"fundamental":[6],"problems":[7],"in":[8,121],"varied":[9],"communities,":[10],"including":[11],"signal":[12],"processing,":[13],"statistics":[14],"machine":[16],"learning.":[17],"Herein,":[18],"we":[19,145],"focus":[20],"on":[21,72,100,126,177],"an":[22,40,186],"important":[23],"greedy":[24,156],"algorithm":[25,75,184],"for":[26,36,66,80,165],"these":[27],"problems:":[28],"Backward":[29],"Stepwise":[30,48],"Regression.":[31],"We":[32],"present":[33],"novel":[34],"guarantees":[35],"the":[37,73,81,86,90,97,101,127,132,138],"algorithm,":[38],"propose":[39],"efficient,":[41],"numerically":[42],"stable":[43],"implementation,":[44],"put":[46],"forth":[47],"Regression":[49],"with":[50,89],"Replacement":[51],"(SRR),":[52],"a":[53,115,181],"new":[54],"family":[55],"of":[56,131,140],"two-stage":[57,163],"algorithms":[58,157,164,170],"that":[59,117],"employs":[60],"both":[61],"forward":[62,153],"backward":[64,74,155],"steps":[65],"compressed":[67,166],"sensing":[68],"problems.":[69],"Prior":[70],"work":[71],"has":[76,185],"proven":[77],"its":[78],"optimality":[79],"problem,":[84],"provided":[85],"residual":[87,102],"associated":[88],"optimal":[91],"solution":[92],"is":[93],"small":[94],"enough.":[95],"However,":[96],"existing":[98],"bounds":[99],"magnitude":[103,141],"NP-hard":[105],"to":[106,137],"compute.":[107],"In":[108,143],"contrast,":[109],"our":[110],"main":[111],"theoretical":[112],"result":[113],"includes":[114],"bound":[116],"can":[118],"be":[119],"computed":[120],"polynomial":[122],"time,":[123],"depends":[124],"chiefly":[125],"smallest":[128],"singular":[129],"value":[130],"matrix,":[133],"also":[135],"extends":[136],"method":[139],"pruning.":[142],"addition,":[144],"report":[146],"numerical":[147],"experiments":[148],"highlighting":[149],"crucial":[150],"differences":[151],"between":[152],"compare":[159],"SRR":[160,169,183],"against":[161],"popular":[162],"sensing.":[167],"Remarkably,":[168],"generally":[171],"maintain":[172],"good":[173],"sparse":[174],"performance":[176],"coherent":[178],"dictionaries.":[179],"Further,":[180],"particular":[182],"edge":[187],"over":[188],"Subspace":[189],"Pursuit.":[190]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3163433893","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":2}],"updated_date":"2025-04-20T21:30:17.884690","created_date":"2021-05-24"}