{"id":"https://openalex.org/W2919148352","doi":"https://doi.org/10.1109/icassp.2019.8682919","title":"Learning Requirements for Stealth Attacks","display_name":"Learning Requirements for Stealth Attacks","publication_year":2019,"publication_date":"2019-04-17","ids":{"openalex":"https://openalex.org/W2919148352","doi":"https://doi.org/10.1109/icassp.2019.8682919","mag":"2919148352"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2019.8682919","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1902.08222","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037272156","display_name":"Ke Sun","orcid":"https://orcid.org/0000-0003-3893-7731"},"institutions":[{"id":"https://openalex.org/I91136226","display_name":"University of Sheffield","ror":"https://ror.org/05krs5044","country_code":"GB","type":"funder","lineage":["https://openalex.org/I91136226"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Ke Sun","raw_affiliation_strings":["Department of Automatic Control and Systems Engineering; University of Sheffield; Sheffield S1 3JD UK"],"affiliations":[{"raw_affiliation_string":"Department of Automatic Control and Systems Engineering; University of Sheffield; Sheffield S1 3JD UK","institution_ids":["https://openalex.org/I91136226"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059775092","display_name":"I\u00f1aki Esnaola","orcid":"https://orcid.org/0000-0001-5597-1718"},"institutions":[{"id":"https://openalex.org/I91136226","display_name":"University of Sheffield","ror":"https://ror.org/05krs5044","country_code":"GB","type":"funder","lineage":["https://openalex.org/I91136226"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Inaki Esnaola","raw_affiliation_strings":["Department of Automatic Control and Systems Engineering; University of Sheffield; Sheffield S1 3JD UK"],"affiliations":[{"raw_affiliation_string":"Department of Automatic Control and Systems Engineering; University of Sheffield; Sheffield S1 3JD UK","institution_ids":["https://openalex.org/I91136226"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066992345","display_name":"Antonia M. Tulino","orcid":"https://orcid.org/0000-0002-6050-4150"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Antonia M. Tulino","raw_affiliation_strings":["NOKIA, Bell Labs, Holmdel, NJ, 07733, USA"],"affiliations":[{"raw_affiliation_string":"NOKIA, Bell Labs, Holmdel, NJ, 07733, USA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5042307561","display_name":"H. Vincent Poor","orcid":"https://orcid.org/0000-0002-2062-131X"},"institutions":[{"id":"https://openalex.org/I20089843","display_name":"Princeton University","ror":"https://ror.org/00hx57361","country_code":"US","type":"funder","lineage":["https://openalex.org/I20089843"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"H. Vincent Poor","raw_affiliation_strings":["Department of Electrical Engineering; Princeton University; Princeton NJ 08544 USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering; Princeton University; Princeton NJ 08544 USA","institution_ids":["https://openalex.org/I20089843"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.064,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.904874,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":79,"max":80},"biblio":{"volume":null,"issue":null,"first_page":"8102","last_page":"8106"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10917","display_name":"Smart Grid Security and Resilience","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10917","display_name":"Smart Grid Security and Resilience","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9858,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.47280568},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.450451},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.4107113}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66803885},{"id":"https://openalex.org/C122044880","wikidata":"https://www.wikidata.org/wiki/Q5498822","display_name":"Ergodic theory","level":2,"score":0.6557891},{"id":"https://openalex.org/C77553402","wikidata":"https://www.wikidata.org/wiki/Q13222579","display_name":"Upper and lower bounds","level":2,"score":0.5725881},{"id":"https://openalex.org/C185142706","wikidata":"https://www.wikidata.org/wiki/Q1134404","display_name":"Covariance matrix","level":2,"score":0.5569023},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.53486186},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.47280568},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.450451},{"id":"https://openalex.org/C33962027","wikidata":"https://www.wikidata.org/wiki/Q1930697","display_name":"Wishart distribution","level":3,"score":0.43315962},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.4107113},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3435467},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33792028},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33625594},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32780868},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21422228},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2019.8682919","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1902.08222","pdf_url":"https://arxiv.org/pdf/1902.08222","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1902.08222","pdf_url":"https://arxiv.org/pdf/1902.08222","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1964253666","https://openalex.org/W1970225669","https://openalex.org/W2005028112","https://openalex.org/W2023070266","https://openalex.org/W2028239856","https://openalex.org/W2071992589","https://openalex.org/W2072184935","https://openalex.org/W2089662742","https://openalex.org/W2100445566","https://openalex.org/W2100508089","https://openalex.org/W2106424475","https://openalex.org/W2163599171","https://openalex.org/W2164681195","https://openalex.org/W2210387432","https://openalex.org/W2428854946","https://openalex.org/W2963039654","https://openalex.org/W2963645489","https://openalex.org/W2965497096","https://openalex.org/W2967364281","https://openalex.org/W3133603318","https://openalex.org/W4256571797","https://openalex.org/W605663379"],"related_works":["https://openalex.org/W3134381438","https://openalex.org/W3131856045","https://openalex.org/W2389605595","https://openalex.org/W2364482911","https://openalex.org/W2146312983","https://openalex.org/W2118598748","https://openalex.org/W2108933226","https://openalex.org/W2057690963","https://openalex.org/W2011956837","https://openalex.org/W1586339758"],"abstract_inverted_index":{"The":[0,39,65],"learning":[1],"data":[2,19,63,70],"requirements":[3],"are":[4],"analyzed":[5],"for":[6,84],"the":[7,17,46,53,58,61,68,73,85,89,96],"construction":[8],"of":[9,60,67],"stealth":[10],"attacks":[11],"in":[12,31,101],"state":[13],"estimation.":[14],"In":[15],"particular,":[16],"training":[18,62,69],"set":[20],"is":[21,43,77,99],"used":[22],"to":[23,57],"compute":[24],"a":[25,32,36],"sample":[26],"covariance":[27],"matrix":[28,34],"that":[29,95],"results":[30],"random":[33],"with":[35,55],"Wishart":[37],"distribution.":[38],"ergodic":[40,74],"attack":[41,48,75],"performance":[42,49,76],"defined":[44],"as":[45],"average":[47],"obtained":[50],"by":[51,79],"taking":[52],"expectation":[54],"respect":[56],"distribution":[59],"set.":[64],"impact":[66],"size":[71],"on":[72,88],"characterized":[78],"proposing":[80],"an":[81],"upper":[82],"bound":[83,98],"performance.":[86],"Simulations":[87],"IEEE":[90],"30-Bus":[91],"test":[92],"system":[93],"show":[94],"proposed":[97],"tight":[100],"practical":[102],"settings.":[103]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2919148352","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2025-04-22T09:09:05.746626","created_date":"2019-03-11"}