{"id":"https://openalex.org/W2962918106","doi":"https://doi.org/10.1109/icassp.2019.8682255","title":"Designing an Effective Metric Learning Pipeline for Speaker Diarization","display_name":"Designing an Effective Metric Learning Pipeline for Speaker Diarization","publication_year":2019,"publication_date":"2019-04-17","ids":{"openalex":"https://openalex.org/W2962918106","doi":"https://doi.org/10.1109/icassp.2019.8682255","mag":"2962918106"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2019.8682255","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://www.osti.gov/servlets/purl/1514799","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5090107273","display_name":"Vivek Narayanaswamy","orcid":"https://orcid.org/0000-0002-6570-2930"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"funder","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Vivek Sivaraman Narayanaswamy","raw_affiliation_strings":["Arizona State University"],"affiliations":[{"raw_affiliation_string":"Arizona State University","institution_ids":["https://openalex.org/I55732556"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046632395","display_name":"Jayaraman J. Thiagarajan","orcid":"https://orcid.org/0000-0002-8517-5816"},"institutions":[{"id":"https://openalex.org/I1282311441","display_name":"Lawrence Livermore National Laboratory","ror":"https://ror.org/041nk4h53","country_code":"US","type":"funder","lineage":["https://openalex.org/I1282311441","https://openalex.org/I1330989302","https://openalex.org/I198811213","https://openalex.org/I4210138311"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jayaraman J. Thiagarajan","raw_affiliation_strings":["Lawrence Livermore National Labs"],"affiliations":[{"raw_affiliation_string":"Lawrence Livermore National Labs","institution_ids":["https://openalex.org/I1282311441"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101697214","display_name":"Huan Song","orcid":"https://orcid.org/0000-0002-9639-9962"},"institutions":[{"id":"https://openalex.org/I4210120115","display_name":"Robert Bosch (United States)","ror":"https://ror.org/02venad53","country_code":"US","type":"funder","lineage":["https://openalex.org/I4210120115","https://openalex.org/I889804353"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Huan Song","raw_affiliation_strings":["Bosch Research North America"],"affiliations":[{"raw_affiliation_string":"Bosch Research North America","institution_ids":["https://openalex.org/I4210120115"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5074371899","display_name":"Andreas Spanias","orcid":"https://orcid.org/0000-0003-0306-9348"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"funder","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Andreas Spanias","raw_affiliation_strings":["Arizona State University"],"affiliations":[{"raw_affiliation_string":"Arizona State University","institution_ids":["https://openalex.org/I55732556"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.252,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":17,"citation_normalized_percentile":{"value":0.836955,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":"2","issue":null,"first_page":"5806","last_page":"5810"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/speaker-diarisation","display_name":"Speaker diarisation","score":0.773651},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.70224935},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.70187473},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5513442},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.49704793}],"concepts":[{"id":"https://openalex.org/C149838564","wikidata":"https://www.wikidata.org/wiki/Q7574248","display_name":"Speaker diarisation","level":3,"score":0.773651},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76579404},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.75501204},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.7023859},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.70224935},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.70187473},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.55957985},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5513442},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.49704793},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47484},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.45808497},{"id":"https://openalex.org/C133892786","wikidata":"https://www.wikidata.org/wiki/Q1145189","display_name":"Speaker recognition","level":2,"score":0.45142758},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4213093},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.4046692},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09363568},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08213222},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2019.8682255","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.osti.gov/biblio/1514799","pdf_url":"https://www.osti.gov/servlets/purl/1514799","source":{"id":"https://openalex.org/S4306402487","display_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I139351228","host_organization_name":"Office of Scientific and Technical Information","host_organization_lineage":["https://openalex.org/I139351228"],"host_organization_lineage_names":["Office of Scientific and Technical Information"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1811.00183","pdf_url":"https://arxiv.org/pdf/1811.00183","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://www.osti.gov/biblio/1514799","pdf_url":"https://www.osti.gov/servlets/purl/1514799","source":{"id":"https://openalex.org/S4306402487","display_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I139351228","host_organization_name":"Office of Scientific and Technical Information","host_organization_lineage":["https://openalex.org/I139351228"],"host_organization_lineage_names":["Office of Scientific and Technical Information"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","score":0.69,"display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1514535095","https://openalex.org/W1544827683","https://openalex.org/W1585610988","https://openalex.org/W1965819578","https://openalex.org/W2081074144","https://openalex.org/W2088234478","https://openalex.org/W2096733369","https://openalex.org/W2098789322","https://openalex.org/W2159591770","https://openalex.org/W2606377603","https://openalex.org/W2638067502","https://openalex.org/W2748026385","https://openalex.org/W2750259098","https://openalex.org/W2792005857","https://openalex.org/W2886006657","https://openalex.org/W2949615363","https://openalex.org/W2963350250","https://openalex.org/W2963403868","https://openalex.org/W2963470929","https://openalex.org/W2963775347","https://openalex.org/W3091905774","https://openalex.org/W3099206234","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4384929466","https://openalex.org/W4247736853","https://openalex.org/W3148366653","https://openalex.org/W2206035908","https://openalex.org/W2175373321","https://openalex.org/W2162158162","https://openalex.org/W2125642021","https://openalex.org/W1999004162","https://openalex.org/W1521049138","https://openalex.org/W1493012537"],"abstract_inverted_index":{"State-of-the-art":[0],"speaker":[1,21],"diarization":[2,98,127],"systems":[3],"utilize":[4],"knowledge":[5],"from":[6,40],"external":[7],"data,":[8],"in":[9,135,140],"the":[10,35,70,84,87,91,115,136,151],"form":[11],"of":[12,28,69,114,118,138,153],"a":[13,79,105,111,141],"pre-trained":[14,41],"distance":[15],"metric,":[16],"to":[17,23,43,76,103,109],"effectively":[18],"determine":[19],"relative":[20],"identities":[22],"unseen":[24],"data.":[25],"However,":[26],"much":[27],"recent":[29],"focus":[30],"has":[31],"been":[32],"on":[33],"choosing":[34],"appropriate":[36],"feature":[37,71],"extractor,":[38,72],"ranging":[39],"i-vectors":[42],"representations":[44],"learned":[45],"via":[46],"different":[47,130,154],"sequence":[48],"modeling":[49],"architectures":[50],"(e.g.":[51],"1D-CNNs,":[52],"LSTMs,":[53],"attention":[54],"models),":[55],"while":[56],"adopting":[57],"off-the-shelf":[58],"metric":[59,80,119],"learning":[60,81,120],"solutions.":[61],"In":[62],"this":[63,123],"paper,":[64],"we":[65,101,125,146],"argue":[66],"that,":[67],"regardless":[68],"it":[73],"is":[74],"crucial":[75],"carefully":[77],"design":[78,155],"pipeline,":[82],"namely":[83],"loss":[85],"function,":[86],"sampling":[88],"strategy":[89],"and":[90,133,157],"discriminative":[92],"margin":[93],"parameter,":[94],"for":[95],"building":[96],"robust":[97],"systems.":[99],"Furthermore,":[100],"propose":[102],"adopt":[104],"fine-grained":[106],"validation":[107],"process":[108],"obtain":[110],"comprehensive":[112],"evaluation":[113],"generalization":[116],"power":[117],"pipelines.":[121],"To":[122],"end,":[124],"measure":[126],"performance":[128],"across":[129],"language":[131],"speakers,":[132],"variations":[134],"number":[137],"speakers":[139],"recording.":[142],"Using":[143],"empirical":[144],"studies,":[145],"provide":[147],"interesting":[148],"insights":[149],"into":[150],"effectiveness":[152],"choices":[156],"make":[158],"recommendations.":[159]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2962918106","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":5}],"updated_date":"2025-04-20T20:56:45.084778","created_date":"2019-07-30"}