{"id":"https://openalex.org/W2593825114","doi":"https://doi.org/10.1109/icassp.2017.7952551","title":"Character-level deep conflation for business data analytics","display_name":"Character-level deep conflation for business data analytics","publication_year":2017,"publication_date":"2017-03-01","ids":{"openalex":"https://openalex.org/W2593825114","doi":"https://doi.org/10.1109/icassp.2017.7952551","mag":"2593825114"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2017.7952551","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1702.02640","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5066666034","display_name":"Zhe Gan","orcid":null},"institutions":[{"id":"https://openalex.org/I170897317","display_name":"Duke University","ror":"https://ror.org/00py81415","country_code":"US","type":"funder","lineage":["https://openalex.org/I170897317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhe Gan","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Duke University, Durham, NC"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Duke University, Durham, NC","institution_ids":["https://openalex.org/I170897317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008891378","display_name":"Pardeep Singh","orcid":"https://orcid.org/0000-0002-0021-3327"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"P. D. Singh","raw_affiliation_strings":["Microsoft Research, Redmond, WA"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Redmond, WA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113021809","display_name":"Ameet V Joshi","orcid":null},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ameet Joshi","raw_affiliation_strings":["Microsoft Corporation, Redmond, WA"],"affiliations":[{"raw_affiliation_string":"Microsoft Corporation, Redmond, WA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101727205","display_name":"Xiaodong He","orcid":"https://orcid.org/0000-0002-9463-9168"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiaodong He","raw_affiliation_strings":["Microsoft Research, Redmond, WA"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Redmond, WA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088339142","display_name":"Jianshu Chen","orcid":null},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jianshu Chen","raw_affiliation_strings":["Microsoft Research, Redmond, WA"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Redmond, WA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114910293","display_name":"Jianfeng Gao","orcid":"https://orcid.org/0000-0002-5702-6143"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jianfeng Gao","raw_affiliation_strings":["Microsoft Research, Redmond, WA"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Redmond, WA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100671324","display_name":"Li Deng","orcid":"https://orcid.org/0000-0002-1014-0790"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Li Deng","raw_affiliation_strings":["Microsoft Research, Redmond, WA"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Redmond, WA","institution_ids":["https://openalex.org/I1290206253"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.673,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":19,"citation_normalized_percentile":{"value":0.925873,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/conflation","display_name":"Conflation","score":0.9803656},{"id":"https://openalex.org/keywords/jaccard-index","display_name":"Jaccard index","score":0.4946036},{"id":"https://openalex.org/keywords/merge","display_name":"Merge (version control)","score":0.4348503}],"concepts":[{"id":"https://openalex.org/C130440534","wikidata":"https://www.wikidata.org/wiki/Q14946528","display_name":"Conflation","level":2,"score":0.9803656},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80787724},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6440784},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.57324404},{"id":"https://openalex.org/C203519979","wikidata":"https://www.wikidata.org/wiki/Q865360","display_name":"Jaccard index","level":3,"score":0.4946036},{"id":"https://openalex.org/C2780861071","wikidata":"https://www.wikidata.org/wiki/Q1062934","display_name":"Character (mathematics)","level":2,"score":0.49251685},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.4823153},{"id":"https://openalex.org/C197129107","wikidata":"https://www.wikidata.org/wiki/Q1921621","display_name":"Merge (version control)","level":2,"score":0.4348503},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.263057},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.24563596},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.08250171},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08028945},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2017.7952551","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1702.02640","pdf_url":"https://arxiv.org/pdf/1702.02640","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1702.02640","pdf_url":"https://arxiv.org/pdf/1702.02640","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1606347560","https://openalex.org/W1753482797","https://openalex.org/W179875071","https://openalex.org/W1800356822","https://openalex.org/W1815076433","https://openalex.org/W1832693441","https://openalex.org/W1899794420","https://openalex.org/W1938755728","https://openalex.org/W1964879903","https://openalex.org/W2064675550","https://openalex.org/W2120615054","https://openalex.org/W2125930537","https://openalex.org/W2130942839","https://openalex.org/W2131876387","https://openalex.org/W2136189984","https://openalex.org/W2142920810","https://openalex.org/W2157331557","https://openalex.org/W2158899491","https://openalex.org/W2170240176","https://openalex.org/W2170738476","https://openalex.org/W2170973209","https://openalex.org/W2951359136","https://openalex.org/W2951559648","https://openalex.org/W2952230511","https://openalex.org/W2952729433","https://openalex.org/W2962997665","https://openalex.org/W2963012544","https://openalex.org/W2963251942","https://openalex.org/W2963504252","https://openalex.org/W2963682631","https://openalex.org/W2963921497","https://openalex.org/W2964121744","https://openalex.org/W3122775348"],"related_works":["https://openalex.org/W4254879869","https://openalex.org/W3127229356","https://openalex.org/W3022576529","https://openalex.org/W2913569734","https://openalex.org/W2628526247","https://openalex.org/W2352149790","https://openalex.org/W2294604808","https://openalex.org/W2186092498","https://openalex.org/W2000801317","https://openalex.org/W1982687909"],"abstract_inverted_index":{"Connecting":[0],"different":[1,22,54],"text":[2,44,105,126],"attributes":[3],"associated":[4],"with":[5],"the":[6,37,48,78,82,88,103,121,125,145,148,157,189],"same":[7,49],"entity":[8,50],"(conflation)":[9],"is":[10,40,64,73,130],"important":[11],"in":[12,24,132],"business":[13,183],"data":[14],"analytics":[15,184],"since":[16],"it":[17],"could":[18,51],"help":[19],"merge":[20],"two":[21,43,154],"tables":[23],"a":[25,29,69,96,181],"database":[26],"to":[27,67,75,119,143],"provide":[28],"more":[30],"comprehensive":[31],"profile":[32],"of":[33,81,147,156],"an":[34,133],"entity.":[35],"However,":[36],"conflation":[38,70,99,159],"task":[39],"challenging":[41],"because":[42],"strings":[45,83,106],"that":[46,72,101],"describe":[47],"be":[52],"quite":[53],"from":[55,107],"each":[56],"other":[57],"for":[58],"reasons":[59],"such":[60],"as":[61],"misspelling.":[62],"It":[63],"therefore":[65],"critical":[66],"develop":[68,95],"model":[71,100,129],"able":[74],"truly":[76],"understand":[77],"semantic":[79,89],"meaning":[80],"and":[84,139,170,186],"match":[85],"them":[86],"at":[87],"level.":[90],"To":[91],"this":[92],"end,":[93],"we":[94,152],"character-level":[97],"deep":[98,158],"encodes":[102],"input":[104],"character":[108],"level":[109],"into":[110],"finite":[111],"dimension":[112],"feature":[113],"vectors,":[114],"which":[115],"are":[116],"then":[117],"used":[118],"compute":[120],"cosine":[122],"similarity":[123],"between":[124],"strings.":[127],"The":[128],"trained":[131],"end-to-end":[134],"manner":[135],"using":[136],"back":[137],"propagation":[138],"stochastic":[140],"gradient":[141],"descent":[142],"maximize":[144],"likelihood":[146],"correct":[149],"association.":[150],"Specifically,":[151],"propose":[153],"variants":[155],"model,":[160],"based":[161],"on":[162,180],"long-short-term":[163],"memory":[164],"(LSTM)":[165],"recurrent":[166],"neural":[167,172],"network":[168,173],"(RNN)":[169],"convolutional":[171],"(CNN),":[174],"respectively.":[175],"Both":[176],"models":[177],"perform":[178],"well":[179],"real-world":[182],"dataset":[185],"significantly":[187],"outperform":[188],"baseline":[190],"bag-of-character":[191],"(BoC)":[192],"model.":[193]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2593825114","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":5},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1}],"updated_date":"2025-04-23T07:19:24.847861","created_date":"2017-03-16"}