{"id":"https://openalex.org/W2398924558","doi":"https://doi.org/10.1109/icassp.2016.7472086","title":"Consensus inference on mobile phone sensors for activity recognition","display_name":"Consensus inference on mobile phone sensors for activity recognition","publication_year":2016,"publication_date":"2016-03-01","ids":{"openalex":"https://openalex.org/W2398924558","doi":"https://doi.org/10.1109/icassp.2016.7472086","mag":"2398924558"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2016.7472086","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://www.osti.gov/biblio/1253675","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5082526623","display_name":"Huan Songg","orcid":null},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"funder","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Huan Songg","raw_affiliation_strings":["Arizona State University, Tempe, AZ, US"],"affiliations":[{"raw_affiliation_string":"Arizona State University, Tempe, AZ, US","institution_ids":["https://openalex.org/I55732556"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046632395","display_name":"Jayaraman J. Thiagarajan","orcid":"https://orcid.org/0000-0002-8517-5816"},"institutions":[{"id":"https://openalex.org/I1282311441","display_name":"Lawrence Livermore National Laboratory","ror":"https://ror.org/041nk4h53","country_code":"US","type":"funder","lineage":["https://openalex.org/I1282311441","https://openalex.org/I1330989302","https://openalex.org/I198811213","https://openalex.org/I4210138311"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jayaraman J. Thiagarajan","raw_affiliation_strings":["Lawrence Livermore National Labs, Livermore, CA"],"affiliations":[{"raw_affiliation_string":"Lawrence Livermore National Labs, Livermore, CA","institution_ids":["https://openalex.org/I1282311441"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081874896","display_name":"Karthikeyan Natesan Ramamurthy","orcid":"https://orcid.org/0000-0002-6021-5930"},"institutions":[{"id":"https://openalex.org/I4210114115","display_name":"IBM Research - Thomas J. Watson Research Center","ror":"https://ror.org/0265w5591","country_code":"US","type":"facility","lineage":["https://openalex.org/I1341412227","https://openalex.org/I4210114115"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Karthikeyan Natesan Ramamurthy","raw_affiliation_strings":["IBM T.J. Watson Research Center, Yorktown Heights, NY"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, Yorktown Heights, NY","institution_ids":["https://openalex.org/I4210114115"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074371899","display_name":"Andreas Spanias","orcid":"https://orcid.org/0000-0003-0306-9348"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"funder","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Andreas Spanias","raw_affiliation_strings":["SenSIP Center, ECEE, Arizona State University, Tempe, AZ"],"affiliations":[{"raw_affiliation_string":"SenSIP Center, ECEE, Arizona State University, Tempe, AZ","institution_ids":["https://openalex.org/I55732556"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5062945520","display_name":"Pavan Turaga","orcid":"https://orcid.org/0000-0002-5263-5943"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"funder","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Pavan Turaga","raw_affiliation_strings":["SenSIP Center, ECEE, Arizona State University, Tempe, AZ"],"affiliations":[{"raw_affiliation_string":"SenSIP Center, ECEE, Arizona State University, Tempe, AZ","institution_ids":["https://openalex.org/I55732556"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.197,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.60223,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"2294","last_page":"2298"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9825,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10273","display_name":"IoT and Edge/Fog Computing","score":0.9825,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.7237566},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.64447814},{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature Engineering","score":0.5627815},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor Fusion","score":0.5398239}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7984974},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.7237566},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.64447814},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.61746645},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5817844},{"id":"https://openalex.org/C150594956","wikidata":"https://www.wikidata.org/wiki/Q1334829","display_name":"Wearable computer","level":2,"score":0.5770902},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.5627815},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.5398239},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.522023},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5201019},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.4858746},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.45238212},{"id":"https://openalex.org/C24590314","wikidata":"https://www.wikidata.org/wiki/Q336038","display_name":"Wireless sensor network","level":2,"score":0.41634744},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38398054},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35046178},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.16988882},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.09692627},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2016.7472086","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.osti.gov/biblio/1253675","pdf_url":null,"source":{"id":"https://openalex.org/S4306402487","display_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I139351228","host_organization_name":"Office of Scientific and Technical Information","host_organization_lineage":["https://openalex.org/I139351228"],"host_organization_lineage_names":["Office of Scientific and Technical Information"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://www.osti.gov/biblio/1253675","pdf_url":null,"source":{"id":"https://openalex.org/S4306402487","display_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I139351228","host_organization_name":"Office of Scientific and Technical Information","host_organization_lineage":["https://openalex.org/I139351228"],"host_organization_lineage_names":["Office of Scientific and Technical Information"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.76}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1572369853","https://openalex.org/W188689747","https://openalex.org/W1986808747","https://openalex.org/W1995431865","https://openalex.org/W2017634428","https://openalex.org/W2018790085","https://openalex.org/W2056077615","https://openalex.org/W2068021035","https://openalex.org/W2071325675","https://openalex.org/W2079985975","https://openalex.org/W2096465141","https://openalex.org/W2098089028","https://openalex.org/W2102541915","https://openalex.org/W2110159806","https://openalex.org/W2142635246","https://openalex.org/W2144836231","https://openalex.org/W2149216032","https://openalex.org/W2156329326","https://openalex.org/W2157541503","https://openalex.org/W2170858770","https://openalex.org/W2540822603","https://openalex.org/W3098549467","https://openalex.org/W4211179122","https://openalex.org/W4239340087","https://openalex.org/W4255262795"],"related_works":["https://openalex.org/W4389116644","https://openalex.org/W4376608661","https://openalex.org/W3105278570","https://openalex.org/W3103844505","https://openalex.org/W2971659033","https://openalex.org/W2759690896","https://openalex.org/W259157601","https://openalex.org/W2582769230","https://openalex.org/W2153315159","https://openalex.org/W2117913171"],"abstract_inverted_index":{"The":[0],"pervasive":[1],"use":[2],"of":[3,34,42,84,107],"wearable":[4],"sensors":[5,36,89],"in":[6,66,90],"activity":[7],"and":[8,20,57],"health":[9],"monitoring":[10],"presents":[11],"a":[12,31,74,81,91,115],"huge":[13],"potential":[14],"for":[15,37],"building":[16],"novel":[17,75],"data":[18,29],"analysis":[19],"prediction":[21],"frameworks.":[22],"In":[23,69],"particular,":[24],"approaches":[25,45],"that":[26,79,102,119],"can":[27],"harness":[28],"from":[30,87],"diverse":[32],"set":[33],"low-cost":[35],"recognition":[38,55,77,125],"are":[39],"needed.":[40],"Many":[41],"the":[43,64,67,104,124],"existing":[44],"rely":[46],"heavily":[47],"on":[48,114],"elaborate":[49],"feature":[50,109],"engineering":[51],"to":[52,129],"build":[53],"robust":[54],"systems,":[56],"their":[58],"performance":[59,126],"is":[60],"often":[61],"limited":[62],"by":[63],"inaccuracies":[65],"data.":[68],"this":[70],"paper,":[71],"we":[72],"develop":[73],"two-stage":[76],"system":[78],"enables":[80],"systematic":[82],"fusion":[83],"complementary":[85],"information":[86],"multiple":[88],"linear":[92],"graph":[93],"embedding":[94],"setting,":[95],"while":[96],"employing":[97],"an":[98],"ensemble":[99],"classifier":[100],"phase":[101],"leverages":[103],"discriminative":[105],"power":[106],"different":[108],"extraction":[110],"strategies.":[111],"Experimental":[112],"results":[113],"challenging":[116],"dataset":[117],"show":[118],"our":[120],"framework":[121],"greatly":[122],"improves":[123],"when":[127],"compared":[128],"using":[130],"any":[131],"single":[132],"sensor.":[133]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2398924558","counts_by_year":[{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":2}],"updated_date":"2025-04-18T19:50:50.896272","created_date":"2016-06-24"}