{"id":"https://openalex.org/W2167689159","doi":"https://doi.org/10.1109/icassp.2014.6854924","title":"Source counting in speech mixtures using a variational EM approach for complex WATSON mixture models","display_name":"Source counting in speech mixtures using a variational EM approach for complex WATSON mixture models","publication_year":2014,"publication_date":"2014-05-01","ids":{"openalex":"https://openalex.org/W2167689159","doi":"https://doi.org/10.1109/icassp.2014.6854924","mag":"2167689159"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2014.6854924","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5011191228","display_name":"Lukas Drude","orcid":"https://orcid.org/0000-0003-3683-5432"},"institutions":[{"id":"https://openalex.org/I206945453","display_name":"Paderborn University","ror":"https://ror.org/058kzsd48","country_code":"DE","type":"funder","lineage":["https://openalex.org/I206945453"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Lukas Drude","raw_affiliation_strings":["Department of Communications Engineering, University of Paderborn, Paderborn, Germany"],"affiliations":[{"raw_affiliation_string":"Department of Communications Engineering, University of Paderborn, Paderborn, Germany","institution_ids":["https://openalex.org/I206945453"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041495647","display_name":"Aleksej Chinaev","orcid":"https://orcid.org/0000-0002-6256-7593"},"institutions":[{"id":"https://openalex.org/I206945453","display_name":"Paderborn University","ror":"https://ror.org/058kzsd48","country_code":"DE","type":"funder","lineage":["https://openalex.org/I206945453"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Aleksej Chinaev","raw_affiliation_strings":["Department of Communications Engineering, University of Paderborn, Paderborn, Germany"],"affiliations":[{"raw_affiliation_string":"Department of Communications Engineering, University of Paderborn, Paderborn, Germany","institution_ids":["https://openalex.org/I206945453"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113469347","display_name":"Dang Hai Tran Vu","orcid":null},"institutions":[{"id":"https://openalex.org/I206945453","display_name":"Paderborn University","ror":"https://ror.org/058kzsd48","country_code":"DE","type":"funder","lineage":["https://openalex.org/I206945453"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Dang Hai Tran Vu","raw_affiliation_strings":["Department of Communications Engineering, University of Paderborn, Paderborn, Germany"],"affiliations":[{"raw_affiliation_string":"Department of Communications Engineering, University of Paderborn, Paderborn, Germany","institution_ids":["https://openalex.org/I206945453"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082075598","display_name":"Reinhold Haeb\u2010Umbach","orcid":"https://orcid.org/0000-0001-9468-7330"},"institutions":[{"id":"https://openalex.org/I206945453","display_name":"Paderborn University","ror":"https://ror.org/058kzsd48","country_code":"DE","type":"funder","lineage":["https://openalex.org/I206945453"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Reinhold Haeb-Umbach","raw_affiliation_strings":["Department of Communications Engineering, University of Paderborn, Paderborn, Germany"],"affiliations":[{"raw_affiliation_string":"Department of Communications Engineering, University of Paderborn, Paderborn, Germany","institution_ids":["https://openalex.org/I206945453"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.111,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":22,"citation_normalized_percentile":{"value":0.89933,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"6834","last_page":"6838"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/watson","display_name":"Watson","score":0.6114572},{"id":"https://openalex.org/keywords/mode","display_name":"Mode (computer interface)","score":0.43447748}],"concepts":[{"id":"https://openalex.org/C2776608531","wikidata":"https://www.wikidata.org/wiki/Q12253","display_name":"Watson","level":2,"score":0.6114572},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.58290035},{"id":"https://openalex.org/C129844170","wikidata":"https://www.wikidata.org/wiki/Q41299","display_name":"Quadratic equation","level":2,"score":0.49061647},{"id":"https://openalex.org/C2776182073","wikidata":"https://www.wikidata.org/wiki/Q7575395","display_name":"Speech enhancement","level":3,"score":0.4630473},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45025316},{"id":"https://openalex.org/C48677424","wikidata":"https://www.wikidata.org/wiki/Q6888088","display_name":"Mode (computer interface)","level":2,"score":0.43447748},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.43343407},{"id":"https://openalex.org/C110121322","wikidata":"https://www.wikidata.org/wiki/Q865811","display_name":"Distribution (mathematics)","level":2,"score":0.43158114},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.42226824},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.38750607},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3440213},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32338554},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.11915356},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2014.6854924","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W135733562","https://openalex.org/W1663973292","https://openalex.org/W1987906574","https://openalex.org/W1991082011","https://openalex.org/W2027616605","https://openalex.org/W2043216213","https://openalex.org/W2155515171","https://openalex.org/W2171784699","https://openalex.org/W2172085063","https://openalex.org/W285277413","https://openalex.org/W4212863985","https://openalex.org/W81377659"],"related_works":["https://openalex.org/W4232759540","https://openalex.org/W4231424160","https://openalex.org/W3174693904","https://openalex.org/W3096184950","https://openalex.org/W2902037120","https://openalex.org/W2560584003","https://openalex.org/W2313409890","https://openalex.org/W2244083478","https://openalex.org/W2151363515","https://openalex.org/W2119897479"],"abstract_inverted_index":{"In":[0],"this":[1],"contribution":[2,77],"we":[3],"derive":[4],"a":[5,24,53,86],"variational":[6],"EM":[7],"(VEM)":[8],"algorithm":[9,42,119],"for":[10],"model":[11,25],"selection":[12],"in":[13,34,52],"complex":[14],"Watson":[15,64,95],"mixture":[16,55],"models,":[17],"which":[18],"have":[19],"been":[20],"recently":[21],"proposed":[22],"as":[23],"of":[26,29,49,62,81,85,93,103],"the":[27,35,47,59,63,68,71,79,82,90,94,101,104,117],"distribution":[28],"normalized":[30],"microphone":[31],"array":[32],"signals":[33,69],"short-time":[36],"Fourier":[37],"transform":[38],"domain.":[39],"The":[40,97],"VEM":[41,118],"is":[43,78,113,120],"applied":[44],"to":[45,125],"count":[46],"number":[48],"active":[50],"sources":[51],"speech":[54],"by":[56],"iteratively":[57],"estimating":[58],"mode":[60,91],"vectors":[61],"distributions":[65],"and":[66],"suppressing":[67],"from":[70],"corresponding":[72],"directions.":[73],"A":[74],"key":[75],"theoretical":[76],"derivation":[80],"MMSE":[83],"estimate":[84],"quadratic":[87],"form":[88],"involving":[89],"vector":[92],"distribution.":[96],"experimental":[98],"results":[99],"demonstrate":[100],"effectiveness":[102],"source":[105],"counting":[106],"approach":[107],"at":[108],"moderately":[109],"low":[110],"SNR.":[111],"It":[112],"further":[114],"shown":[115],"that":[116],"more":[121],"robust":[122],"with":[123],"respect":[124],"used":[126],"threshold":[127],"values.":[128]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2167689159","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2019,"cited_by_count":4},{"year":2018,"cited_by_count":5},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":3},{"year":2015,"cited_by_count":4},{"year":2014,"cited_by_count":1}],"updated_date":"2025-03-22T20:49:02.447966","created_date":"2016-06-24"}