{"id":"https://openalex.org/W2037672915","doi":"https://doi.org/10.1109/icassp.2013.6638283","title":"Locality preserving KSVD for nonlinear manifold learning","display_name":"Locality preserving KSVD for nonlinear manifold learning","publication_year":2013,"publication_date":"2013-05-01","ids":{"openalex":"https://openalex.org/W2037672915","doi":"https://doi.org/10.1109/icassp.2013.6638283","mag":"2037672915"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2013.6638283","pdf_url":null,"source":{"id":"https://openalex.org/S4363607879","display_name":"IEEE International Conference on Acoustics Speech and Signal Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5000117252","display_name":"Yin Zhou","orcid":"https://orcid.org/0000-0001-7536-7753"},"institutions":[{"id":"https://openalex.org/I86501945","display_name":"University of Delaware","ror":"https://ror.org/01sbq1a82","country_code":"US","type":"education","lineage":["https://openalex.org/I86501945"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yin Zhou","raw_affiliation_strings":["University of Delaware, Newark, DE. USA"],"affiliations":[{"raw_affiliation_string":"University of Delaware, Newark, DE. USA","institution_ids":["https://openalex.org/I86501945"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103514053","display_name":"Jinglun Gao","orcid":null},"institutions":[{"id":"https://openalex.org/I86501945","display_name":"University of Delaware","ror":"https://ror.org/01sbq1a82","country_code":"US","type":"education","lineage":["https://openalex.org/I86501945"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jinglun Gao","raw_affiliation_strings":["University of Delaware, Newark, DE. USA"],"affiliations":[{"raw_affiliation_string":"University of Delaware, Newark, DE. USA","institution_ids":["https://openalex.org/I86501945"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5036946701","display_name":"Kenneth E. Barner","orcid":"https://orcid.org/0000-0002-0936-7840"},"institutions":[{"id":"https://openalex.org/I86501945","display_name":"University of Delaware","ror":"https://ror.org/01sbq1a82","country_code":"US","type":"education","lineage":["https://openalex.org/I86501945"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kenneth E. Barner","raw_affiliation_strings":["University of Delaware, Newark, DE. USA"],"affiliations":[{"raw_affiliation_string":"University of Delaware, Newark, DE. USA","institution_ids":["https://openalex.org/I86501945"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.327,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.463506,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"3372","last_page":"3376"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/manifold","display_name":"Manifold (fluid mechanics)","score":0.66614056},{"id":"https://openalex.org/keywords/data-point","display_name":"Data point","score":0.4343404},{"id":"https://openalex.org/keywords/local-optimum","display_name":"Local optimum","score":0.41456738}],"concepts":[{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.6955861},{"id":"https://openalex.org/C529865628","wikidata":"https://www.wikidata.org/wiki/Q1790740","display_name":"Manifold (fluid mechanics)","level":2,"score":0.66614056},{"id":"https://openalex.org/C151876577","wikidata":"https://www.wikidata.org/wiki/Q7049464","display_name":"Nonlinear dimensionality reduction","level":3,"score":0.6489303},{"id":"https://openalex.org/C2779808786","wikidata":"https://www.wikidata.org/wiki/Q6664603","display_name":"Locality","level":2,"score":0.636186},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6276294},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.57968295},{"id":"https://openalex.org/C129844170","wikidata":"https://www.wikidata.org/wiki/Q41299","display_name":"Quadratic equation","level":2,"score":0.5228475},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5172766},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.49416688},{"id":"https://openalex.org/C21080849","wikidata":"https://www.wikidata.org/wiki/Q13611879","display_name":"Data point","level":2,"score":0.4343404},{"id":"https://openalex.org/C141934464","wikidata":"https://www.wikidata.org/wiki/Q3305386","display_name":"Local optimum","level":2,"score":0.41456738},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4089836},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38425827},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21663141},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.16840035},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2013.6638283","pdf_url":null,"source":{"id":"https://openalex.org/S4363607879","display_name":"IEEE International Conference on Acoustics Speech and Signal Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/1","score":0.67,"display_name":"No poverty"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1551219034","https://openalex.org/W1992405901","https://openalex.org/W2001141328","https://openalex.org/W2001619934","https://openalex.org/W2006793117","https://openalex.org/W2027805700","https://openalex.org/W2027922120","https://openalex.org/W2053186076","https://openalex.org/W2077776048","https://openalex.org/W2097308346","https://openalex.org/W2111279883","https://openalex.org/W2114122776","https://openalex.org/W2116498084","https://openalex.org/W2117684310","https://openalex.org/W2125874614","https://openalex.org/W2126069482","https://openalex.org/W2126949814","https://openalex.org/W2127271355","https://openalex.org/W2129812935","https://openalex.org/W2134563198","https://openalex.org/W2143328795","https://openalex.org/W2150112333","https://openalex.org/W2156287497","https://openalex.org/W2156838815","https://openalex.org/W2160547390","https://openalex.org/W2163584563","https://openalex.org/W4285719527","https://openalex.org/W4292023222"],"related_works":["https://openalex.org/W49725993","https://openalex.org/W3159953198","https://openalex.org/W2766342722","https://openalex.org/W2383239174","https://openalex.org/W2380477800","https://openalex.org/W2362829263","https://openalex.org/W2347974653","https://openalex.org/W2129664189","https://openalex.org/W2083095455","https://openalex.org/W117517268"],"abstract_inverted_index":{"Discovering":[0],"the":[1,34,64,99,104,106,117,130],"intrinsic":[2],"low-dimensional":[3,118],"structure":[4,132],"from":[5],"high-dimensional":[6],"observation":[7],"space":[8],"(e.g.,":[9],"images,":[10],"videos),":[11],"in":[12,33,44,148],"many":[13,21],"cases,":[14],"is":[15,56,121],"critical":[16],"to":[17,59,70],"successful":[18],"recognition.":[19,154],"However,":[20],"existing":[22],"nonlinear":[23,100,135],"manifold":[24],"learning":[25,142],"(NML)":[26],"algorithms":[27,41,62,111,143],"have":[28],"quadratic":[29],"or":[30],"cubic":[31],"complexity":[32,108],"number":[35,90],"of":[36,53,66,91,109,133],"data,":[37],"which":[38,84],"makes":[39],"these":[40],"computationally":[42],"exorbitant":[43],"processing":[45],"real-world":[46],"large-scale":[47],"datasets.":[48],"Randomly":[49],"selecting":[50],"a":[51,76,88],"subset":[52],"data":[54],"points":[55,97],"very":[57],"likely":[58],"place":[60],"NML":[61,110],"at":[63],"risk":[65],"local":[67],"optima,":[68],"leading":[69],"poor":[71],"performance.":[72],"This":[73],"paper":[74],"proposes":[75],"novel":[77],"algorithm":[78],"called":[79],"Locality":[80],"Preserving":[81],"KSVD":[82],"(LP-KSVD),":[83],"can":[85,112],"effectively":[86],"learn":[87],"small":[89],"dictionary":[92,141],"atoms":[93],"as":[94],"locality-preserving":[95],"landmark":[96],"on":[98,103,152],"manifold.":[101],"Based":[102],"atoms,":[105],"computational":[107],"be":[113],"greatly":[114],"reduced":[115],"while":[116],"embedding":[119],"quality":[120],"improved.":[122],"Experimental":[123],"results":[124],"show":[125],"that":[126],"LP-KSVD":[127],"successfully":[128],"preserves":[129],"geometric":[131],"various":[134],"manifolds":[136],"and":[137,146],"it":[138],"outperforms":[139],"state-of-the-art":[140],"(MOD,":[144],"K-SVD":[145],"LLC)":[147],"our":[149],"preliminary":[150],"study":[151],"face":[153]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2037672915","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1}],"updated_date":"2024-12-15T23:13:27.099414","created_date":"2016-06-24"}