{"id":"https://openalex.org/W2098753191","doi":"https://doi.org/10.1109/icassp.2011.5946730","title":"Denoising sparse noise via online dictionary learning","display_name":"Denoising sparse noise via online dictionary learning","publication_year":2011,"publication_date":"2011-05-01","ids":{"openalex":"https://openalex.org/W2098753191","doi":"https://doi.org/10.1109/icassp.2011.5946730","mag":"2098753191"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2011.5946730","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://lear.inrialpes.fr/people/cherian/papers/icassp.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5024613828","display_name":"Anoop Cherian","orcid":"https://orcid.org/0000-0002-5566-0351"},"institutions":[{"id":"https://openalex.org/I130238516","display_name":"University of Minnesota","ror":"https://ror.org/017zqws13","country_code":"US","type":"education","lineage":["https://openalex.org/I130238516"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"A. Cherian","raw_affiliation_strings":["Department of Computer Science, University of Minnesota-Twin Cities, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University of Minnesota-Twin Cities, USA","institution_ids":["https://openalex.org/I130238516"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058767558","display_name":"Suvrit Sra","orcid":"https://orcid.org/0000-0001-8516-4925"},"institutions":[{"id":"https://openalex.org/I4210112925","display_name":"Max Planck Institute for Biological Cybernetics","ror":"https://ror.org/026nmvv73","country_code":"DE","type":"facility","lineage":["https://openalex.org/I149899117","https://openalex.org/I4210112925"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"S. Sra","raw_affiliation_strings":["MPI for Biological Cybernetics, 72026 T\u00fcbingen, Germany"],"affiliations":[{"raw_affiliation_string":"MPI for Biological Cybernetics, 72026 T\u00fcbingen, Germany","institution_ids":["https://openalex.org/I4210112925"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5027267535","display_name":"Nikos Papanikolopoulos","orcid":"https://orcid.org/0000-0002-2177-1870"},"institutions":[{"id":"https://openalex.org/I130238516","display_name":"University of Minnesota","ror":"https://ror.org/017zqws13","country_code":"US","type":"education","lineage":["https://openalex.org/I130238516"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"N. Papanikolopoulos","raw_affiliation_strings":["Department of Computer Science, University of Minnesota-Twin Cities, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University of Minnesota-Twin Cities, USA","institution_ids":["https://openalex.org/I130238516"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.93,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":15,"citation_normalized_percentile":{"value":0.875065,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"2060","last_page":"2063"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/scale-invariant-feature-transform","display_name":"Scale-invariant feature transform","score":0.4658381},{"id":"https://openalex.org/keywords/k-svd","display_name":"K-SVD","score":0.4585767},{"id":"https://openalex.org/keywords/gaussian-noise","display_name":"Gaussian Noise","score":0.45426032},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.43850762}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6973942},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64077896},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6251961},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.58509237},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.55220413},{"id":"https://openalex.org/C29265498","wikidata":"https://www.wikidata.org/wiki/Q7047719","display_name":"Noise measurement","level":3,"score":0.51362866},{"id":"https://openalex.org/C61265191","wikidata":"https://www.wikidata.org/wiki/Q767770","display_name":"Scale-invariant feature transform","level":3,"score":0.4658381},{"id":"https://openalex.org/C154771677","wikidata":"https://www.wikidata.org/wiki/Q17098361","display_name":"K-SVD","level":3,"score":0.4585767},{"id":"https://openalex.org/C124066611","wikidata":"https://www.wikidata.org/wiki/Q28684319","display_name":"Sparse approximation","level":2,"score":0.45818675},{"id":"https://openalex.org/C4199805","wikidata":"https://www.wikidata.org/wiki/Q2725903","display_name":"Gaussian noise","level":2,"score":0.45426032},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.43850762},{"id":"https://openalex.org/C157972887","wikidata":"https://www.wikidata.org/wiki/Q463359","display_name":"Convex optimization","level":3,"score":0.41780007},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.35867876},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35473448},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.24213913},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.23862779},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20552924},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2011.5946730","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.671.7010","pdf_url":"http://lear.inrialpes.fr/people/cherian/papers/icassp.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.671.7010","pdf_url":"http://lear.inrialpes.fr/people/cherian/papers/icassp.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.81}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1538795295","https://openalex.org/W1541459201","https://openalex.org/W1556531089","https://openalex.org/W1595717062","https://openalex.org/W199564985","https://openalex.org/W2015193034","https://openalex.org/W2093404847","https://openalex.org/W2112447569","https://openalex.org/W2130836991","https://openalex.org/W2132211083","https://openalex.org/W2147717514","https://openalex.org/W2151103935","https://openalex.org/W2153663612","https://openalex.org/W2163616251","https://openalex.org/W2296616510","https://openalex.org/W2397770138","https://openalex.org/W2535202871","https://openalex.org/W2798766386","https://openalex.org/W2964828868","https://openalex.org/W3140890412","https://openalex.org/W4242209908","https://openalex.org/W4250955649"],"related_works":["https://openalex.org/W2890952311","https://openalex.org/W2509955295","https://openalex.org/W2388952560","https://openalex.org/W2204991413","https://openalex.org/W2149282631","https://openalex.org/W2099321050","https://openalex.org/W2047275718","https://openalex.org/W2034957211","https://openalex.org/W2011611369","https://openalex.org/W110819671"],"abstract_inverted_index":{"The":[0],"idea":[1],"of":[2,10,24,100,130,137],"learning":[3,62,108],"overcomplete":[4,46],"dictionaries":[5,47],"based":[6],"on":[7,134],"the":[8,25,36,49,98,131,135],"paradigm":[9],"compressive":[11],"sensing":[12],"has":[13],"found":[14],"numerous":[15],"applications,":[16],"among":[17],"which":[18,73],"image":[19],"denoising":[20,31],"is":[21,39,51,74],"considered":[22],"one":[23],"most":[26],"successful.":[27],"But":[28],"many":[29],"state-of-the-art":[30],"techniques":[32],"inherently":[33],"assume":[34],"that":[35,91,111,143],"signal":[37,50],"noise":[38,115,149],"Gaussian.":[40],"We":[41,81],"instead":[42],"propose":[43],"to":[44,53,67,93,106,141],"learn":[45],"where":[48],"allowed":[52],"have":[54],"both":[55],"Gaussian":[56],"and":[57],"(sparse)":[58],"Laplacian":[59],"noise.":[60],"Dictionary":[61],"in":[63],"this":[64],"setting":[65],"leads":[66],"a":[68],"difficult":[69],"non-convex":[70],"optimization":[71],"problem,":[72],"further":[75],"exacerbated":[76],"by":[77,85],"large":[78],"input":[79],"datasets.":[80],"tackle":[82],"these":[83,125],"difficulties":[84],"developing":[86],"an":[87],"efficient":[88],"online":[89],"algorithm":[90],"scales":[92],"data":[94,110],"size.":[95],"To":[96],"assess":[97],"efficacy":[99],"our":[101,114,150],"model,":[102,116],"we":[103,127],"apply":[104],"it":[105],"dictionary":[107,133],"for":[109],"naturally":[112],"satisfy":[113],"namely,":[117],"Scale":[118],"Invariant":[119],"Feature":[120],"Transform":[121],"(SIFT)":[122],"descriptors.":[123],"For":[124],"data,":[126],"measure":[128],"performance":[129],"learned":[132],"task":[136],"nearest-neighbor":[138],"retrieval:":[139],"compared":[140],"methods":[142],"do":[144],"not":[145],"explicitly":[146],"model":[147],"sparse":[148],"method":[151],"exhibits":[152],"superior":[153],"performance.":[154]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2098753191","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2020,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":3},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":4},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-29T13:42:54.622061","created_date":"2016-06-24"}