{"id":"https://openalex.org/W2117935098","doi":"https://doi.org/10.1109/icassp.2008.4518211","title":"Cosntruction of a scalable decoder for a wireless sensor network using Bayesian networks","display_name":"Cosntruction of a scalable decoder for a wireless sensor network using Bayesian networks","publication_year":2008,"publication_date":"2008-03-01","ids":{"openalex":"https://openalex.org/W2117935098","doi":"https://doi.org/10.1109/icassp.2008.4518211","mag":"2117935098"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2008.4518211","pdf_url":null,"source":{"id":"https://openalex.org/S4210167542","display_name":"Proceedings of the ... IEEE International Conference on Acoustics, Speech, and Signal Processing","issn_l":"1520-6149","issn":["1520-6149","2379-190X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057012949","display_name":"Ruchira Yasaratna","orcid":null},"institutions":[{"id":"https://openalex.org/I46247651","display_name":"University of Manitoba","ror":"https://ror.org/02gfys938","country_code":"CA","type":"education","lineage":["https://openalex.org/I46247651"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Ruchira Yasaratna","raw_affiliation_strings":["Dept. of Electr. & Comput. Eng., Univ. of Manitoba, Winnipeg, MB#TAB#"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Comput. Eng., Univ. of Manitoba, Winnipeg, MB#TAB#","institution_ids":["https://openalex.org/I46247651"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024985986","display_name":"Pradeepa Yahampath","orcid":"https://orcid.org/0000-0001-8495-1310"},"institutions":[{"id":"https://openalex.org/I46247651","display_name":"University of Manitoba","ror":"https://ror.org/02gfys938","country_code":"CA","type":"education","lineage":["https://openalex.org/I46247651"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Pradeepa Yahampath","raw_affiliation_strings":["Dept. of Electr. & Comput. Eng., Univ. of Manitoba, Winnipeg, MB#TAB#"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Comput. Eng., Univ. of Manitoba, Winnipeg, MB#TAB#","institution_ids":["https://openalex.org/I46247651"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":63},"biblio":{"volume":null,"issue":null,"first_page":"2721","last_page":"2724"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12879","display_name":"Distributed Sensor Networks and Detection Algorithms","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12879","display_name":"Distributed Sensor Networks and Detection Algorithms","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11321","display_name":"Error Correcting Code Techniques","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/factor-graph","display_name":"Factor graph","score":0.7984351}],"concepts":[{"id":"https://openalex.org/C159246509","wikidata":"https://www.wikidata.org/wiki/Q5428725","display_name":"Factor graph","level":3,"score":0.7984351},{"id":"https://openalex.org/C24590314","wikidata":"https://www.wikidata.org/wiki/Q336038","display_name":"Wireless sensor network","level":2,"score":0.75415957},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.72453576},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7055336},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.7040985},{"id":"https://openalex.org/C90652560","wikidata":"https://www.wikidata.org/wiki/Q11091747","display_name":"Minimum mean square error","level":3,"score":0.6811912},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.5927366},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.54000723},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5106943},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.4329901},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.42559102},{"id":"https://openalex.org/C33724603","wikidata":"https://www.wikidata.org/wiki/Q812540","display_name":"Bayesian network","level":2,"score":0.418579},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.27477002},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18200696},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.1718176},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.107815206},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.08569953},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.07925111},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2008.4518211","pdf_url":null,"source":{"id":"https://openalex.org/S4210167542","display_name":"Proceedings of the ... IEEE International Conference on Acoustics, Speech, and Signal Processing","issn_l":"1520-6149","issn":["1520-6149","2379-190X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.43}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W2008906462","https://openalex.org/W2054654746","https://openalex.org/W2074673068","https://openalex.org/W2124973140","https://openalex.org/W2126806574","https://openalex.org/W2137813581","https://openalex.org/W2162404506","https://openalex.org/W2168748199","https://openalex.org/W2171265988","https://openalex.org/W3146404850","https://openalex.org/W4236354166","https://openalex.org/W4297792526"],"related_works":["https://openalex.org/W4307680413","https://openalex.org/W4302615923","https://openalex.org/W4252544247","https://openalex.org/W3138245144","https://openalex.org/W3083906073","https://openalex.org/W2963817320","https://openalex.org/W2354832544","https://openalex.org/W2161474341","https://openalex.org/W1992518732","https://openalex.org/W162456724"],"abstract_inverted_index":{"We":[0],"consider":[1],"minimum":[2],"mean":[3],"square":[4],"error":[5],"(MMSE)":[6],"decoding":[7],"in":[8],"a":[9,34,42,50,74],"dense":[10],"sensor":[11,78,102],"network":[12,65],"where":[13],"distributed":[14],"quantization":[15],"is":[16,55],"used":[17],"to":[18,95],"improve":[19],"the":[20,25,29,67,85,90],"performance.":[21],"In":[22,47],"view":[23],"of":[24,28,77],"exponential":[26],"complexity":[27],"optimal":[30],"decoder,":[31],"we":[32],"present":[33],"framework":[35],"based":[36,72],"on":[37,73],"Bayesian":[38,64],"networks":[39],"for":[40],"designing":[41],"scalable,":[43],"but":[44],"near-optimal":[45],"decoder.":[46],"this":[48],"approach,":[49],"complexity-":[51],"constrained":[52],"factor":[53],"graph":[54],"obtained":[56],"by":[57],"an":[58,62],"algorithm":[59],"which":[60],"constructs":[61],"equivalent":[63],"using":[66,89],"maximum":[68],"likelihood":[69],"(ML)":[70],"criterion,":[71],"training":[75],"set":[76],"observations.":[79],"Our":[80],"simulation":[81],"results":[82],"show":[83],"that,":[84],"scalable":[86],"decoders":[87],"constructed":[88],"proposed":[91],"approach":[92],"preform":[93],"close":[94],"optimal,":[96],"with":[97],"both":[98],"Gaussian":[99],"and":[100],"non-Gaussian":[101],"data.":[103]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2117935098","counts_by_year":[],"updated_date":"2025-01-17T15:43:50.615119","created_date":"2016-06-24"}