{"id":"https://openalex.org/W2047632477","doi":"https://doi.org/10.1109/icassp.2002.5743833","title":"Building a topic-dependent maximum entropy model for very large corpora","display_name":"Building a topic-dependent maximum entropy model for very large corpora","publication_year":2002,"publication_date":"2002-05-01","ids":{"openalex":"https://openalex.org/W2047632477","doi":"https://doi.org/10.1109/icassp.2002.5743833","mag":"2047632477"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2002.5743833","pdf_url":null,"source":{"id":"https://openalex.org/S4363607879","display_name":"IEEE International Conference on Acoustics Speech and Signal Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072718837","display_name":"Wu Jun","orcid":"https://orcid.org/0000-0001-6879-620X"},"institutions":[{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"education","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jun Wu","raw_affiliation_strings":["Center for language and speech processing, The Johns Hopkins University, Baltimore, MD 21218, USA"],"affiliations":[{"raw_affiliation_string":"Center for language and speech processing, The Johns Hopkins University, Baltimore, MD 21218, USA","institution_ids":["https://openalex.org/I145311948"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014580424","display_name":"Sanjeev Khudanpur","orcid":"https://orcid.org/0000-0001-5976-0897"},"institutions":[{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"education","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sanjeev Khudanpur","raw_affiliation_strings":["Center for language and speech processing, The Johns Hopkins University, Baltimore, MD 21218, USA"],"affiliations":[{"raw_affiliation_string":"Center for language and speech processing, The Johns Hopkins University, Baltimore, MD 21218, USA","institution_ids":["https://openalex.org/I145311948"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.62,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":17,"citation_normalized_percentile":{"value":0.795483,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"I","last_page":"780"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/n-gram","display_name":"n-gram","score":0.53125376}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.85630584},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.79388636},{"id":"https://openalex.org/C9679016","wikidata":"https://www.wikidata.org/wiki/Q1417473","display_name":"Principle of maximum entropy","level":2,"score":0.7438108},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.6790216},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56138813},{"id":"https://openalex.org/C71559656","wikidata":"https://www.wikidata.org/wiki/Q671298","display_name":"Divide and conquer algorithms","level":2,"score":0.54144293},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5338157},{"id":"https://openalex.org/C117884012","wikidata":"https://www.wikidata.org/wiki/Q94489","display_name":"n-gram","level":3,"score":0.53125376},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.49802613},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.48002592},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.3926138},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35659808},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.16885507},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.2002.5743833","pdf_url":null,"source":{"id":"https://openalex.org/S4363607879","display_name":"IEEE International Conference on Acoustics Speech and Signal Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.78,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":5,"referenced_works":["https://openalex.org/W1887099548","https://openalex.org/W2001792610","https://openalex.org/W2141645663","https://openalex.org/W2160842254","https://openalex.org/W36200081"],"related_works":["https://openalex.org/W4307474317","https://openalex.org/W2787311093","https://openalex.org/W2624072012","https://openalex.org/W2532616038","https://openalex.org/W2250909759","https://openalex.org/W2147879411","https://openalex.org/W2057384730","https://openalex.org/W2008468404","https://openalex.org/W155946694","https://openalex.org/W1555968995"],"abstract_inverted_index":{"Maximum":[0],"entropy":[1],"(ME)":[2],"techniques":[3],"have":[4],"been":[5],"successfully":[6],"used":[7,29],"to":[8,62,120],"combine":[9],"different":[10],"sources":[11],"of":[12,21,103],"linguistically":[13],"meaningful":[14],"constraints":[15],"in":[16,37,92],"language":[17],"models.":[18],"However,":[19],"most":[20],"the":[22,34,94,101,104,116,121,126],"current":[23],"ME":[24,39,67,105],"models":[25,40,68],"can":[26],"only":[27],"be":[28],"for":[30,41,70,125],"small":[31],"corpora,":[32],"since":[33],"computational":[35],"load":[36],"training":[38,79,86],"large":[42,73],"corpora":[43],"is":[44,48,81,96],"unbearable.":[45],"This":[46],"problem":[47],"especially":[49],"severe":[50],"when":[51],"non-local":[52],"dependencies":[53],"are":[54],"considered.":[55],"In":[56],"this":[57],"paper,":[58],"we":[59],"show":[60],"how":[61],"train":[63],"and":[64,87],"use":[65],"topic-dependent":[66],"efficiently":[69],"a":[71],"very":[72],"corpus,":[74],"Broadcast":[75,127],"News":[76,128],"(BN).":[77],"The":[78,90],"time":[80],"greatly":[82],"reduced":[83],"by":[84,99],"hierarchical":[85],"divide-and-conquer":[88],"approaches.":[89],"computation":[91],"using":[93],"model":[95,118,124],"also":[97],"simplified":[98],"pre-normalizing":[100],"denominators":[102],"model.":[106],"We":[107],"report":[108],"new":[109],"speech":[110],"recognition":[111],"results":[112],"showing":[113],"improvement":[114],"with":[115],"topic":[117],"relative":[119],"standard":[122],"N-gram":[123],"task.":[129]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2047632477","counts_by_year":[{"year":2014,"cited_by_count":1}],"updated_date":"2024-12-09T00:46:55.957983","created_date":"2016-06-24"}