{"id":"https://openalex.org/W2109861809","doi":"https://doi.org/10.1109/icassp.1984.1172386","title":"A method for recognizing Japanese monosyllables by using intermediate cumulative distance","display_name":"A method for recognizing Japanese monosyllables by using intermediate cumulative distance","publication_year":2005,"publication_date":"2005-03-24","ids":{"openalex":"https://openalex.org/W2109861809","doi":"https://doi.org/10.1109/icassp.1984.1172386","mag":"2109861809"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.1984.1172386","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101740035","display_name":"Yasuhiro Matsuda","orcid":"https://orcid.org/0000-0002-5716-4298"},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"funder","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Y. Matsuda","raw_affiliation_strings":["Science Institute, IBM Japan, Ltd, Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Science Institute, IBM Japan, Ltd, Tokyo, Japan","institution_ids":["https://openalex.org/I1341412227"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110826285","display_name":"Satoru Tezuka","orcid":null},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"funder","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"S. Tezuka","raw_affiliation_strings":["[Science Institute, IBM Japan Limited, Chiyoda, Tokyo, Japan]"],"affiliations":[{"raw_affiliation_string":"[Science Institute, IBM Japan Limited, Chiyoda, Tokyo, Japan]","institution_ids":["https://openalex.org/I1341412227"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022952479","display_name":"M. Kanoh","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"M. Kanoh","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029742460","display_name":"M. Nishimura","orcid":null},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"funder","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"M. Nishimura","raw_affiliation_strings":["[Science Institute, IBM Japan Limited, Chiyoda, Tokyo, Japan]"],"affiliations":[{"raw_affiliation_string":"[Science Institute, IBM Japan Limited, Chiyoda, Tokyo, Japan]","institution_ids":["https://openalex.org/I1341412227"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5110454630","display_name":"T. Kaneko","orcid":null},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"funder","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"T. Kaneko","raw_affiliation_strings":["[Science Institute, IBM Japan Limited, Chiyoda, Tokyo, Japan]"],"affiliations":[{"raw_affiliation_string":"[Science Institute, IBM Japan Limited, Chiyoda, Tokyo, Japan]","institution_ids":["https://openalex.org/I1341412227"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":61,"max":68},"biblio":{"volume":"9","issue":null,"first_page":"340","last_page":"343"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9786,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9786,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/emphasis","display_name":"Emphasis (telecommunications)","score":0.4849927}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6766324},{"id":"https://openalex.org/C2779581591","wikidata":"https://www.wikidata.org/wiki/Q36244","display_name":"Vowel","level":2,"score":0.65727377},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.656853},{"id":"https://openalex.org/C109089402","wikidata":"https://www.wikidata.org/wiki/Q8188","display_name":"Syllable","level":2,"score":0.6354586},{"id":"https://openalex.org/C2778203577","wikidata":"https://www.wikidata.org/wiki/Q38035","display_name":"Consonant","level":3,"score":0.59731704},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.59579504},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.56660926},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.49915886},{"id":"https://openalex.org/C177454536","wikidata":"https://www.wikidata.org/wiki/Q578290","display_name":"Emphasis (telecommunications)","level":2,"score":0.4849927},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39352274},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.28487492},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.107304364},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0752773},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp.1984.1172386","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.55,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":2,"referenced_works":["https://openalex.org/W2135438213","https://openalex.org/W2137089646"],"related_works":["https://openalex.org/W2801025542","https://openalex.org/W2379338161","https://openalex.org/W2165258585","https://openalex.org/W2083125711","https://openalex.org/W2020946215","https://openalex.org/W2018557761","https://openalex.org/W2004149178","https://openalex.org/W1966580183","https://openalex.org/W1964706935","https://openalex.org/W14242463"],"abstract_inverted_index":{"In":[0],"Japanese,":[1],"syllables":[2],"have":[3],"a":[4,13,24,33,36,57,61,130],"well-defined":[5],"role.":[6],"Each":[7],"syllable":[8,29],"may":[9],"roughly":[10],"correspond":[11],"to":[12,23,88,133],"\"Kana\".":[14],"So,":[15],"they":[16],"could":[17],"be":[18,122],"used":[19],"as":[20],"the":[21,50,69,76,89,113,134],"input":[22],"Japanese":[25,137],"word":[26],"processor.":[27],"A":[28],"generally":[30],"consists":[31],"of":[32,79,91,105,136],"consonant":[34,51],"and":[35,52,93,117],"vowel.":[37],"Most":[38],"past":[39],"works":[40],"are":[41],"concerned":[42],"with":[43,103],"techniques":[44],"which":[45,59],"segment":[46],"an":[47],"utterance":[48],"into":[49],"vowel":[53],"parts.":[54],"We":[55,65,96,124],"developed":[56],"method":[58,68,85,128],"uses":[60],"pre-determined":[62],"point":[63],"instead.":[64],"call":[66],"this":[67,127],"Intermediate":[70],"Cumulative":[71],"Distance":[72],"matching":[73,81],"method,":[74],"since":[75],"cumulative":[77],"distance":[78],"DP":[80],"is":[82,111,115,129],"used.":[83],"This":[84],"was":[86,101],"applied":[87],"recognition":[90,135],"68":[92],"101":[94],"monosyllables.":[95,138],"found":[97],"that":[98,104,112,126],"its":[99,118],"performance":[100],"comparable":[102],"previously":[106],"reported":[107],"works.":[108],"Our":[109],"emphasis":[110],"algorithm":[114],"simple":[116],"hardware":[119],"implementation":[120],"will":[121],"straightforward.":[123],"believe":[125],"practical":[131],"solution":[132]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2109861809","counts_by_year":[],"updated_date":"2025-01-24T16:02:49.626500","created_date":"2016-06-24"}