{"id":"https://openalex.org/W2966733016","doi":"https://doi.org/10.1109/icaci.2019.8778548","title":"A New Learning Scheme of Emotion Recognition From Speech by Using Mean Fourier Parameters","display_name":"A New Learning Scheme of Emotion Recognition From Speech by Using Mean Fourier Parameters","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2966733016","doi":"https://doi.org/10.1109/icaci.2019.8778548","mag":"2966733016"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icaci.2019.8778548","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100387362","display_name":"Xingyu Chen","orcid":"https://orcid.org/0009-0004-2060-5127"},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"funder","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xingyu Chen","raw_affiliation_strings":["School of Computer Science and Engineering, South China University of Technology, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China","institution_ids":["https://openalex.org/I90610280"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017308951","display_name":"Li-Jiao Wu","orcid":null},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"funder","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Li-Jiao Wu","raw_affiliation_strings":["School of Computer Science and Engineering, South China University of Technology, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China","institution_ids":["https://openalex.org/I90610280"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014555076","display_name":"Aihua Mao","orcid":"https://orcid.org/0000-0001-6861-9414"},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"funder","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Aihua Mao","raw_affiliation_strings":["School of Computer Science and Engineering, South China University of Technology, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China","institution_ids":["https://openalex.org/I90610280"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5011145004","display_name":"Zhi\u2010Hui Zhan","orcid":"https://orcid.org/0000-0003-0862-0514"},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"funder","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhi-Hui Zhan","raw_affiliation_strings":["Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China","institution_ids":["https://openalex.org/I90610280"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.162,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.571317,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"96","last_page":"101"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10667","display_name":"Emotion and Mood Recognition","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10667","display_name":"Emotion and Mood Recognition","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78035283},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.7667604},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.6346649},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.592705},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5153841},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.50554514},{"id":"https://openalex.org/C2777438025","wikidata":"https://www.wikidata.org/wiki/Q1339090","display_name":"Emotion recognition","level":2,"score":0.49942636},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4407323},{"id":"https://openalex.org/C61328038","wikidata":"https://www.wikidata.org/wiki/Q3358061","display_name":"Speech processing","level":2,"score":0.43204913},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.4163303},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icaci.2019.8778548","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1551640747","https://openalex.org/W175750906","https://openalex.org/W1923034539","https://openalex.org/W1964469912","https://openalex.org/W1983049966","https://openalex.org/W1995966271","https://openalex.org/W2003837801","https://openalex.org/W2023937851","https://openalex.org/W2026984028","https://openalex.org/W2043152858","https://openalex.org/W2061068689","https://openalex.org/W2062391442","https://openalex.org/W2064641533","https://openalex.org/W2066312930","https://openalex.org/W2098507061","https://openalex.org/W2102267302","https://openalex.org/W2102953093","https://openalex.org/W2111926505","https://openalex.org/W2115506669","https://openalex.org/W2132424470","https://openalex.org/W2139795045","https://openalex.org/W2146334809","https://openalex.org/W2164641162","https://openalex.org/W2487236559","https://openalex.org/W2507824935","https://openalex.org/W2568569675","https://openalex.org/W2576615307","https://openalex.org/W2603621985","https://openalex.org/W2771500318","https://openalex.org/W2791927058","https://openalex.org/W2792463550","https://openalex.org/W2793383796","https://openalex.org/W2898989925","https://openalex.org/W2963609745","https://openalex.org/W59795698"],"related_works":["https://openalex.org/W4386937079","https://openalex.org/W4386259002","https://openalex.org/W4308716060","https://openalex.org/W4280648719","https://openalex.org/W3193043704","https://openalex.org/W3171520305","https://openalex.org/W3135126032","https://openalex.org/W2889302474","https://openalex.org/W1924178503","https://openalex.org/W1546989560"],"abstract_inverted_index":{"Recently,":[0],"the":[1,17,64,70,88,102,109,131,134,145,155,164],"research":[2],"attention":[3],"of":[4,19,91,101,136],"emotional":[5,121,173],"speech":[6,39,50,59,96,118,176],"signals":[7,177],"has":[8],"been":[9],"boosted":[10],"in":[11,49,58,130,144,170,175],"human":[12],"machine":[13],"interfaces":[14],"due":[15,68],"to":[16,34,69],"availability":[18],"high":[20,71],"computation":[21,66],"capability.":[22],"Based":[23],"on":[24,28,38],"different":[25,137,140],"feature":[26,43,104],"extraction":[27,44],"audio":[29],"data,":[30],"it":[31],"is":[32,105,112,168,179],"possible":[33],"achieve":[35],"good":[36],"accuracy":[37],"emotion":[40,51,60,97],"recognition,":[41,61],"thus":[42],"plays":[45],"an":[46],"important":[47],"role":[48],"recognition.":[52,98],"However,":[53],"there":[54],"are":[55,128,142],"still":[56],"dilemmas":[57],"such":[62],"as":[63],"heavy":[65],"burden":[67],"data":[72],"dimension.":[73],"In":[74],"this":[75],"paper,":[76],"we":[77],"propose":[78],"a":[79],"new":[80],"learning":[81],"scheme":[82,157],"with":[83,114,139,158,163],"mean":[84,159],"Fourier":[85,160],"parameters":[86],"using":[87],"perceptual":[89],"content":[90],"voice":[92],"quality":[93],"for":[94,147],"speaker-independent":[95],"The":[99,150],"dimension":[100],"acoustic":[103],"greatly":[106],"reduced":[107],"and":[108,133,178,184],"computational":[110],"performance":[111,148],"improved":[113],"big":[115],"extent.":[116],"Two":[117],"databases":[119],"(German":[120],"corpus,":[122],"Interactive":[123],"Emotional":[124],"Dyadic":[125],"Motion":[126],"Capture)":[127],"used":[129],"experiment,":[132],"combination":[135],"features":[138,183],"classifiers":[141],"implemented":[143],"recognition":[146,151],"comparison.":[149],"results":[152],"show":[153],"that":[154],"proposed":[156],"Parameters":[161],"combined":[162],"Random":[165],"Forest":[166],"classifier":[167],"efficient":[169],"classifying":[171],"various":[172],"states":[174],"excellent":[180],"than":[181],"other":[182],"classifiers.":[185]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2966733016","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2025-04-21T03:18:56.116123","created_date":"2019-08-13"}