{"id":"https://openalex.org/W2808458216","doi":"https://doi.org/10.1109/icaci.2018.8377565","title":"Short-term load forecasting based on support vector regression with improved grey wolf optimizer","display_name":"Short-term load forecasting based on support vector regression with improved grey wolf optimizer","publication_year":2018,"publication_date":"2018-03-01","ids":{"openalex":"https://openalex.org/W2808458216","doi":"https://doi.org/10.1109/icaci.2018.8377565","mag":"2808458216"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icaci.2018.8377565","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100767953","display_name":"Feng Jiang","orcid":"https://orcid.org/0000-0002-4577-4646"},"institutions":[{"id":"https://openalex.org/I158934434","display_name":"Zhongnan University of Economics and Law","ror":"https://ror.org/04yqxxq63","country_code":"CN","type":"education","lineage":["https://openalex.org/I158934434"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Feng Jiang","raw_affiliation_strings":["School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China"],"affiliations":[{"raw_affiliation_string":"School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China","institution_ids":["https://openalex.org/I158934434"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062886191","display_name":"Zijun Peng","orcid":null},"institutions":[{"id":"https://openalex.org/I158934434","display_name":"Zhongnan University of Economics and Law","ror":"https://ror.org/04yqxxq63","country_code":"CN","type":"education","lineage":["https://openalex.org/I158934434"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zijun Peng","raw_affiliation_strings":["School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China"],"affiliations":[{"raw_affiliation_string":"School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China","institution_ids":["https://openalex.org/I158934434"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101981289","display_name":"Jiaqi He","orcid":"https://orcid.org/0000-0001-9768-2156"},"institutions":[{"id":"https://openalex.org/I158934434","display_name":"Zhongnan University of Economics and Law","ror":"https://ror.org/04yqxxq63","country_code":"CN","type":"education","lineage":["https://openalex.org/I158934434"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiaqi He","raw_affiliation_strings":["School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China"],"affiliations":[{"raw_affiliation_string":"School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China","institution_ids":["https://openalex.org/I158934434"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.575,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":9,"citation_normalized_percentile":{"value":0.756413,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"807","last_page":"812"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13717","display_name":"Advanced Algorithms and Applications","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.7869524}],"concepts":[{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.7869524},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.76837945},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.67936945},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6425313},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.5901662},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.49914765},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.44721887},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4451696},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38729334},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38702384},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.2178764},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16981792},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icaci.2018.8377565","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Climate action","id":"https://metadata.un.org/sdg/13","score":0.58}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1609200543","https://openalex.org/W1976213122","https://openalex.org/W1992178840","https://openalex.org/W2011609785","https://openalex.org/W2030242308","https://openalex.org/W2038523443","https://openalex.org/W2045793544","https://openalex.org/W2051795269","https://openalex.org/W2061438946","https://openalex.org/W2067847508","https://openalex.org/W2136632629","https://openalex.org/W2146649024","https://openalex.org/W2171375535","https://openalex.org/W2229291734","https://openalex.org/W2281236923","https://openalex.org/W2358734459","https://openalex.org/W2412390076","https://openalex.org/W2466975708","https://openalex.org/W252159245","https://openalex.org/W2524966923","https://openalex.org/W2554868287","https://openalex.org/W2732547529"],"related_works":["https://openalex.org/W4289356671","https://openalex.org/W3186837933","https://openalex.org/W31220157","https://openalex.org/W2621086889","https://openalex.org/W2389155397","https://openalex.org/W2368989808","https://openalex.org/W2355687852","https://openalex.org/W2312753042","https://openalex.org/W2165884543","https://openalex.org/W2034959125"],"abstract_inverted_index":{"The":[0,60],"forecast":[1,55,74],"of":[2,11,19,75,83],"short-term":[3],"power":[4,13],"load":[5],"(SPL)":[6],"is":[7,68],"an":[8,25],"indispensable":[9],"part":[10],"the":[12,17,20,37,46,51,65,73,81],"system.":[14],"To":[15],"improve":[16],"accuracy":[18,91],"SPL":[21,56],"prediction,":[22],"we":[23,49],"propose":[24],"improved":[26],"grey":[27],"wolf":[28],"optimizer":[29],"optimized":[30],"support":[31],"vector":[32],"regression":[33],"(IGWO-SVR)":[34],"model.":[35],"Taking":[36],"historical":[38],"data,":[39],"meteorological":[40],"factors":[41,44],"and":[42,70,92],"other":[43],"as":[45],"input":[47],"variables,":[48],"establish":[50],"IGWO-SVR":[52,88],"model":[53],"to":[54],"for":[57,72],"next":[58],"hour.":[59],"empirical":[61],"results":[62],"reveal":[63],"that":[64],"proposed":[66],"method":[67],"feasible":[69],"effective":[71],"SPL.":[76],"In":[77],"addition,":[78],"compared":[79],"with":[80],"performance":[82],"BP":[84],"neural":[85],"network,":[86],"SVR,":[87],"has":[89],"better":[90],"robustness.":[93]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2808458216","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2024-12-30T17:52:07.456029","created_date":"2018-06-21"}