{"id":"https://openalex.org/W2054082100","doi":"https://doi.org/10.1109/icacci.2013.6637222","title":"Data labeling method based on cluster purity using relative rough entropy for categorical data clustering","display_name":"Data labeling method based on cluster purity using relative rough entropy for categorical data clustering","publication_year":2013,"publication_date":"2013-08-01","ids":{"openalex":"https://openalex.org/W2054082100","doi":"https://doi.org/10.1109/icacci.2013.6637222","mag":"2054082100"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icacci.2013.6637222","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076149358","display_name":"H. Venkateswara Reddy","orcid":"https://orcid.org/0000-0001-5748-6222"},"institutions":[{"id":"https://openalex.org/I71580170","display_name":"Vardhaman College of Engineering","ror":"https://ror.org/024yvgp47","country_code":null,"type":"education","lineage":["https://openalex.org/I71580170"]}],"countries":[],"is_corresponding":false,"raw_author_name":"H. Venkateswara Reddy","raw_affiliation_strings":["Dept. of Comput. Sci. & Eng., Vardhaman Coll. of Eng., Hyderabad, India"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci. & Eng., Vardhaman Coll. of Eng., Hyderabad, India","institution_ids":["https://openalex.org/I71580170"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110491450","display_name":"S. Viswanadha Raju","orcid":null},"institutions":[{"id":"https://openalex.org/I10874241","display_name":"Jawaharlal Nehru Technological University, Hyderabad","ror":"https://ror.org/002tchr49","country_code":"IN","type":"education","lineage":["https://openalex.org/I10874241"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"S. Viswanadha Raju","raw_affiliation_strings":["Dept. of Comput. Sci. & Eng., JNTUH Coll. of Eng., Karimnagar, India"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci. & Eng., JNTUH Coll. of Eng., Karimnagar, India","institution_ids":["https://openalex.org/I10874241"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5110103821","display_name":"P. K. Agrawal","orcid":null},"institutions":[{"id":"https://openalex.org/I110166357","display_name":"University of Delhi","ror":"https://ror.org/04gzb2213","country_code":"IN","type":"education","lineage":["https://openalex.org/I110166357"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Pratibha Agrawal","raw_affiliation_strings":["Dept. of Comput. Sci. & Eng., Univ. of Delhi, New Delhii, India"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci. & Eng., Univ. of Delhi, New Delhii, India","institution_ids":["https://openalex.org/I110166357"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.696,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":14,"citation_normalized_percentile":{"value":0.685563,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":"63","issue":null,"first_page":"500","last_page":"506"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11063","display_name":"Rough Sets and Fuzzy Logic","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11063","display_name":"Rough Sets and Fuzzy Logic","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/categorical-variable","display_name":"Categorical variable","score":0.70800304},{"id":"https://openalex.org/keywords/data-stream-clustering","display_name":"Data stream clustering","score":0.5911658},{"id":"https://openalex.org/keywords/k-medians-clustering","display_name":"k-medians clustering","score":0.514199},{"id":"https://openalex.org/keywords/clustering-high-dimensional-data","display_name":"Clustering high-dimensional data","score":0.45750263},{"id":"https://openalex.org/keywords/data-point","display_name":"Data point","score":0.447237},{"id":"https://openalex.org/keywords/single-linkage-clustering","display_name":"Single-linkage clustering","score":0.425198}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.8275187},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.7304384},{"id":"https://openalex.org/C5274069","wikidata":"https://www.wikidata.org/wiki/Q2285707","display_name":"Categorical variable","level":2,"score":0.70800304},{"id":"https://openalex.org/C33704608","wikidata":"https://www.wikidata.org/wiki/Q5014717","display_name":"CURE data clustering algorithm","level":4,"score":0.64842504},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64663565},{"id":"https://openalex.org/C94641424","wikidata":"https://www.wikidata.org/wiki/Q5172845","display_name":"Correlation clustering","level":3,"score":0.59446},{"id":"https://openalex.org/C193143536","wikidata":"https://www.wikidata.org/wiki/Q5227360","display_name":"Data stream clustering","level":5,"score":0.5911658},{"id":"https://openalex.org/C115328559","wikidata":"https://www.wikidata.org/wiki/Q4041956","display_name":"k-medians clustering","level":5,"score":0.514199},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5115434},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.5089624},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.50246954},{"id":"https://openalex.org/C17212007","wikidata":"https://www.wikidata.org/wiki/Q5511111","display_name":"Fuzzy clustering","level":3,"score":0.49220052},{"id":"https://openalex.org/C184509293","wikidata":"https://www.wikidata.org/wiki/Q5136711","display_name":"Clustering high-dimensional data","level":3,"score":0.45750263},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4503948},{"id":"https://openalex.org/C21080849","wikidata":"https://www.wikidata.org/wiki/Q13611879","display_name":"Data point","level":2,"score":0.447237},{"id":"https://openalex.org/C149872217","wikidata":"https://www.wikidata.org/wiki/Q5265701","display_name":"Determining the number of clusters in a data set","level":5,"score":0.43548346},{"id":"https://openalex.org/C22648726","wikidata":"https://www.wikidata.org/wiki/Q7523744","display_name":"Single-linkage clustering","level":5,"score":0.425198},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.19234121},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icacci.2013.6637222","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W147860157","https://openalex.org/W1560541823","https://openalex.org/W187313679","https://openalex.org/W1971784203","https://openalex.org/W1982869853","https://openalex.org/W1992419399","https://openalex.org/W1995875735","https://openalex.org/W1996510517","https://openalex.org/W2006685053","https://openalex.org/W2032767345","https://openalex.org/W2041674806","https://openalex.org/W2057712948","https://openalex.org/W2063409192","https://openalex.org/W2064686951","https://openalex.org/W2072307618","https://openalex.org/W208128215","https://openalex.org/W2095897464","https://openalex.org/W2099581008","https://openalex.org/W2106678396","https://openalex.org/W2111291266","https://openalex.org/W2117528467","https://openalex.org/W2118587067","https://openalex.org/W2122943553","https://openalex.org/W2126626732","https://openalex.org/W2127971792","https://openalex.org/W2136917792","https://openalex.org/W2140190241","https://openalex.org/W2156909104","https://openalex.org/W2277957941","https://openalex.org/W2319660501","https://openalex.org/W2340020088","https://openalex.org/W2999729612","https://openalex.org/W4231029117","https://openalex.org/W4234315553","https://openalex.org/W4241466168","https://openalex.org/W4255833381","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4241252752","https://openalex.org/W3186815950","https://openalex.org/W2770741777","https://openalex.org/W2393816671","https://openalex.org/W2389934482","https://openalex.org/W2366173344","https://openalex.org/W2188840951","https://openalex.org/W2084927810","https://openalex.org/W2042755526","https://openalex.org/W1481928625"],"abstract_inverted_index":{"Clustering":[0,8],"is":[1,13,41,71,80,100,116,155,170,184],"an":[2,61,72,89],"important":[3],"technique":[4,32],"in":[5,75,94],"data":[6,11,21,40,48,66,91,105,109,114,132,168],"mining.":[7],"a":[9,86,117,129,156],"large":[10,28],"set":[12],"difficult":[14,118],"and":[15,47,54,88,107,197],"time":[16],"consuming.":[17],"An":[18],"approach":[19],"called":[20],"labeling":[22,67,70,115,133,169],"has":[23],"been":[24],"suggested":[25],"for":[26,44,120,131,138,159,187],"clustering":[27,46,139,198],"databases":[29],"using":[30,134],"sampling":[31],"to":[33,152],"improve":[34],"efficiency":[35,196],"of":[36,144,162,200],"clustering.":[37],"A":[38],"sampled":[39,53],"selected":[42],"randomly":[43],"initial":[45],"points":[49,106],"which":[50],"are":[51,56,203],"not":[52,101],"unclustered":[55],"given":[57],"cluster":[58,87,182],"label":[59],"or":[60],"outlier":[62,188],"based":[63,82],"on":[64,83],"various":[65],"techniques.":[68],"Data":[69],"easy":[73],"task":[74,119],"numerical":[76],"domain":[77,96],"because":[78],"it":[79],"performed":[81,171],"distance":[84,99],"between":[85,104,108],"unlabeled":[90],"point.":[92],"However,":[93],"categorical":[95,121,140],"since":[97],"the":[98,160,181,195,206],"defined":[102],"properly":[103],"point":[110],"with":[111,149,175],"cluster,":[112],"then":[113],"data.":[122,141],"In":[123,165,178],"this":[124,166,179,201],"paper,":[125,180],"we":[126],"have":[127],"proposed":[128],"method":[130],"Relative":[135],"Rough":[136],"Entropy":[137],"The":[142,190],"concept":[143],"entropy,":[145],"introduced":[146],"by":[147,172],"Shannon":[148],"particular":[150],"reference":[151],"information":[153],"theory":[154],"powerful":[157],"mechanism":[158],"measurement":[161],"uncertainty":[163],"information.":[164],"method,":[167],"integrating":[173],"entropy":[174],"rough":[176],"sets.":[177],"purity":[183],"also":[185],"used":[186],"detection.":[189],"experimental":[191],"results":[192],"show":[193],"that":[194],"quality":[199],"algorithm":[202],"better":[204],"than":[205],"previous":[207],"algorithms.":[208]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2054082100","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2017,"cited_by_count":4},{"year":2016,"cited_by_count":3},{"year":2014,"cited_by_count":4}],"updated_date":"2024-12-11T17:58:06.290173","created_date":"2016-06-24"}