{"id":"https://openalex.org/W4387678079","doi":"https://doi.org/10.1109/icac57885.2023.10275201","title":"Comparison of Prophet with Machine Learning Regression Models for Long and Short-Term Manufacturing Forecasting","display_name":"Comparison of Prophet with Machine Learning Regression Models for Long and Short-Term Manufacturing Forecasting","publication_year":2023,"publication_date":"2023-08-30","ids":{"openalex":"https://openalex.org/W4387678079","doi":"https://doi.org/10.1109/icac57885.2023.10275201"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icac57885.2023.10275201","pdf_url":null,"source":{"id":"https://openalex.org/S4363608428","display_name":"2022 27th International Conference on Automation and Computing (ICAC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003079442","display_name":"Syeda Sitara Wishal Fatima","orcid":"https://orcid.org/0009-0000-3970-4636"},"institutions":[{"id":"https://openalex.org/I74413500","display_name":"University of Windsor","ror":"https://ror.org/01gw3d370","country_code":"CA","type":"education","lineage":["https://openalex.org/I74413500"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Syeda Sitara Wishal Fatima","raw_affiliation_strings":["Mechanical, Automotive, and Materials Engineering University of Windsor, Windsor, ON, Canada"],"affiliations":[{"raw_affiliation_string":"Mechanical, Automotive, and Materials Engineering University of Windsor, Windsor, ON, Canada","institution_ids":["https://openalex.org/I74413500"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036568909","display_name":"Afshin Rahimi","orcid":"https://orcid.org/0000-0002-5737-1385"},"institutions":[{"id":"https://openalex.org/I74413500","display_name":"University of Windsor","ror":"https://ror.org/01gw3d370","country_code":"CA","type":"education","lineage":["https://openalex.org/I74413500"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Afshin Rahimi","raw_affiliation_strings":["Mechanical, Automotive, and Materials Engineering University of Windsor, Windsor, ON, Canada"],"affiliations":[{"raw_affiliation_string":"Mechanical, Automotive, and Materials Engineering University of Windsor, Windsor, ON, Canada","institution_ids":["https://openalex.org/I74413500"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5065062313","display_name":"Khizer Hayat","orcid":null},"institutions":[],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Khizer Hayat","raw_affiliation_strings":["Engineering Team IFIVEO Canada Inc., Windsor, ON, Canada"],"affiliations":[{"raw_affiliation_string":"Engineering Team IFIVEO Canada Inc., Windsor, ON, Canada","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12120","display_name":"Air Quality Monitoring and Forecasting","score":0.9871,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12659","display_name":"Innovation Diffusion and Forecasting","score":0.9692,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/operator","display_name":"Operator (biology)","score":0.4418562}],"concepts":[{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.7156505},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.7096727},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6180805},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6050267},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59773195},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.54735726},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.4999361},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.4937304},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.4551518},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.44834277},{"id":"https://openalex.org/C17020691","wikidata":"https://www.wikidata.org/wiki/Q139677","display_name":"Operator (biology)","level":5,"score":0.4418562},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.43114582},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.36401686},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.25466353},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1775375},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C158448853","wikidata":"https://www.wikidata.org/wiki/Q425218","display_name":"Repressor","level":4,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C86339819","wikidata":"https://www.wikidata.org/wiki/Q407384","display_name":"Transcription factor","level":3,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icac57885.2023.10275201","pdf_url":null,"source":{"id":"https://openalex.org/S4363608428","display_name":"2022 27th International Conference on Automation and Computing (ICAC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.47,"display_name":"Industry, innovation and infrastructure"}],"grants":[{"funder":"https://openalex.org/F4320311065","funder_display_name":"University of Windsor","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W2028072219","https://openalex.org/W2060364371","https://openalex.org/W2135046866","https://openalex.org/W2145636832","https://openalex.org/W2187183197","https://openalex.org/W2295598076","https://openalex.org/W2604842920","https://openalex.org/W2747599906","https://openalex.org/W2768348081","https://openalex.org/W2770188460","https://openalex.org/W2811507150","https://openalex.org/W2911964244","https://openalex.org/W2916546784","https://openalex.org/W2921144914","https://openalex.org/W2964022491","https://openalex.org/W2980074872","https://openalex.org/W3015379812","https://openalex.org/W3089354057","https://openalex.org/W3104887532","https://openalex.org/W3181231283","https://openalex.org/W3208543763","https://openalex.org/W4206062825","https://openalex.org/W4226170266","https://openalex.org/W4229058446","https://openalex.org/W4231367092","https://openalex.org/W4231620004","https://openalex.org/W4300528607"],"related_works":["https://openalex.org/W4388550696","https://openalex.org/W4366990902","https://openalex.org/W4321636153","https://openalex.org/W4317732970","https://openalex.org/W4313289487","https://openalex.org/W4289884158","https://openalex.org/W4288365262","https://openalex.org/W2940614149","https://openalex.org/W2787485953","https://openalex.org/W2048488252"],"abstract_inverted_index":{"This":[0,142],"paper":[1],"compares":[2],"Facebook's":[3],"Prophet":[4,52],"with":[5,32,59,86,114],"classic":[6],"regression-based":[7],"machine":[8],"learning":[9],"algorithms":[10,80],"for":[11,42,56,83],"short-term":[12,57,84],"and":[13,36,101,105,119,129,133,148],"long-term":[14,95],"forecasting":[15,25,58,85,157],"in":[16,44,90,150],"a":[17,72],"client's":[18],"manufacturing":[19,46,152],"system.":[20],"The":[21,48,122],"study":[22,143],"uses":[23],"advanced":[24],"methods":[26],"on":[27,154,160],"four":[28],"different":[29],"real-world":[30],"datasets":[31],"rich":[33],"temporal":[34],"features":[35],"complex":[37],"patterns":[38],"to":[39,146],"provide":[40],"insights":[41],"businesses":[43],"the":[45,66,76,91,97,111,151,161],"industry.":[47],"results":[49],"showed":[50],"that":[51,126],"outperformed":[53],"other":[54,77,140],"models":[55,158],"an":[60],"error":[61,115],"percentage":[62],"of":[63,117],"36.82%":[64],"when":[65],"data":[67],"trends":[68,89],"changed":[69],"rapidly":[70],"over":[71],"shorter":[73],"period.":[74],"On":[75],"hand,":[78],"tree-based":[79],"performed":[81],"better":[82,138],"more":[87],"stable":[88],"training":[92],"data.":[93],"For":[94],"forecasting,":[96],"Least":[98,130],"Absolute":[99,131],"Selection":[100,132],"Shrink-age":[102],"Operator":[103,135],"regressor":[104,108],"Random":[106],"Forest":[107],"emerged":[109],"as":[110],"superior":[112],"models,":[113],"percentages":[116],"39.60%":[118,120],"respectively.":[121],"computational":[123],"analysis":[124],"demonstrates":[125],"Bayesian":[127],"Ridge":[128],"Shrinkage":[134],"regressors":[136],"perform":[137],"than":[139],"models.":[141],"provides":[144],"guidance":[145],"practitioners":[147],"decision-makers":[149],"industry":[153],"selecting":[155],"applicable":[156],"based":[159],"relevant":[162],"time":[163],"horizon.":[164]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387678079","counts_by_year":[],"updated_date":"2025-01-05T01:31:01.174787","created_date":"2023-10-17"}