{"id":"https://openalex.org/W4387678007","doi":"https://doi.org/10.1109/icac57885.2023.10275144","title":"Data-Driven Prediction of Polymer Intrinsic Viscosity with Incomplete Time Series Data","display_name":"Data-Driven Prediction of Polymer Intrinsic Viscosity with Incomplete Time Series Data","publication_year":2023,"publication_date":"2023-08-30","ids":{"openalex":"https://openalex.org/W4387678007","doi":"https://doi.org/10.1109/icac57885.2023.10275144"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icac57885.2023.10275144","pdf_url":null,"source":{"id":"https://openalex.org/S4363608428","display_name":"2022 27th International Conference on Automation and Computing (ICAC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113024043","display_name":"Jinmao Bi","orcid":null},"institutions":[{"id":"https://openalex.org/I181326427","display_name":"Donghua University","ror":"https://ror.org/035psfh38","country_code":"CN","type":"education","lineage":["https://openalex.org/I181326427"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jinmao Bi","raw_affiliation_strings":["College of Mechanical Engineering, Donghua University, Shanghai, China","Institute of Artificial Intelligence & Shanghai Frontier Science Research Center for Modern Textiles, Donghua University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Institute of Artificial Intelligence & Shanghai Frontier Science Research Center for Modern Textiles, Donghua University, Shanghai, China","institution_ids":["https://openalex.org/I181326427"]},{"raw_affiliation_string":"College of Mechanical Engineering, Donghua University, Shanghai, China","institution_ids":["https://openalex.org/I181326427"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100364127","display_name":"Peng Zhang","orcid":"https://orcid.org/0000-0002-3879-5860"},"institutions":[{"id":"https://openalex.org/I181326427","display_name":"Donghua University","ror":"https://ror.org/035psfh38","country_code":"CN","type":"education","lineage":["https://openalex.org/I181326427"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peng Zhang","raw_affiliation_strings":["Institute of Artificial Intelligence & Shanghai Frontier Science Research Center for Modern Textiles, Donghua University,Shanghai,China"],"affiliations":[{"raw_affiliation_string":"Institute of Artificial Intelligence & Shanghai Frontier Science Research Center for Modern Textiles, Donghua University,Shanghai,China","institution_ids":["https://openalex.org/I181326427"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100753720","display_name":"Jie Zhang","orcid":"https://orcid.org/0000-0002-1078-1766"},"institutions":[{"id":"https://openalex.org/I181326427","display_name":"Donghua University","ror":"https://ror.org/035psfh38","country_code":"CN","type":"education","lineage":["https://openalex.org/I181326427"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jie Zhang","raw_affiliation_strings":["Institute of Artificial Intelligence & Shanghai Frontier Science Research Center for Modern Textiles, Donghua University,Shanghai,China"],"affiliations":[{"raw_affiliation_string":"Institute of Artificial Intelligence & Shanghai Frontier Science Research Center for Modern Textiles, Donghua University,Shanghai,China","institution_ids":["https://openalex.org/I181326427"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100432562","display_name":"Ming Wang","orcid":"https://orcid.org/0000-0002-2869-5241"},"institutions":[{"id":"https://openalex.org/I181326427","display_name":"Donghua University","ror":"https://ror.org/035psfh38","country_code":"CN","type":"education","lineage":["https://openalex.org/I181326427"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ming Wang","raw_affiliation_strings":["College of Mechanical Engineering, Donghua University, Shanghai, China","Institute of Artificial Intelligence & Shanghai Frontier Science Research Center for Modern Textiles, Donghua University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Mechanical Engineering, Donghua University, Shanghai, China","institution_ids":["https://openalex.org/I181326427"]},{"raw_affiliation_string":"Institute of Artificial Intelligence & Shanghai Frontier Science Research Center for Modern Textiles, Donghua University, Shanghai, China","institution_ids":["https://openalex.org/I181326427"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5113337906","display_name":"Chuncai Zhao","orcid":null},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chuncai Zhao","raw_affiliation_strings":["Xinfengming Group Huzhou Zhongshi Technology Co. Ltd, Zhejiang, China"],"affiliations":[{"raw_affiliation_string":"Xinfengming Group Huzhou Zhongshi Technology Co. Ltd, Zhejiang, China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.412,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.558059,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9723,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminator","display_name":"Discriminator","score":0.6490781},{"id":"https://openalex.org/keywords/data-driven","display_name":"Data-Driven","score":0.46368426}],"concepts":[{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.6826198},{"id":"https://openalex.org/C2779803651","wikidata":"https://www.wikidata.org/wiki/Q5282088","display_name":"Discriminator","level":3,"score":0.6490781},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.6335316},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62984574},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.5989414},{"id":"https://openalex.org/C127172972","wikidata":"https://www.wikidata.org/wiki/Q128709","display_name":"Viscosity","level":2,"score":0.4957055},{"id":"https://openalex.org/C2780440489","wikidata":"https://www.wikidata.org/wiki/Q5227278","display_name":"Data-driven","level":2,"score":0.46368426},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41646287},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35540032},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3512211},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2847706},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.12268856},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.0968788},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icac57885.2023.10275144","pdf_url":null,"source":{"id":"https://openalex.org/S4363608428","display_name":"2022 27th International Conference on Automation and Computing (ICAC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","score":0.6,"display_name":"Reduced inequalities"},{"id":"https://metadata.un.org/sdg/16","score":0.41,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W2064186732","https://openalex.org/W2939948029","https://openalex.org/W2968993717","https://openalex.org/W2981118231","https://openalex.org/W3019352575","https://openalex.org/W3121112409","https://openalex.org/W3126812124","https://openalex.org/W3142483556","https://openalex.org/W3177318507","https://openalex.org/W3178940363","https://openalex.org/W3197588717","https://openalex.org/W4221069960","https://openalex.org/W4226237065","https://openalex.org/W4280526687","https://openalex.org/W4308559079","https://openalex.org/W4311103025","https://openalex.org/W4313593157","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4380714744","https://openalex.org/W4319453655","https://openalex.org/W4293202849","https://openalex.org/W2964074194","https://openalex.org/W2387995142","https://openalex.org/W2089959425","https://openalex.org/W2057775761","https://openalex.org/W1980965563","https://openalex.org/W1608433645","https://openalex.org/W1489300767"],"abstract_inverted_index":{"Prediction":[0],"of":[1,12],"polymer":[2,53,98],"intrinsic":[3,54,99],"viscosity":[4,55,100],"is":[5,70,95],"very":[6],"important":[7],"for":[8,52,97],"stabilizing":[9],"the":[10,35,75,84,89,103,110,117],"quality":[11],"polyester":[13],"fibers.":[14],"Data-driven":[15],"prediction":[16,56,101,129],"has":[17],"been":[18],"applied":[19],"to":[20,31,38,72,109],"solve":[21],"engineering":[22],"problems.":[23],"However,":[24],"incomplete":[25,58],"data":[26,65],"are":[27],"all":[28],"too":[29],"frequent":[30],"a":[32,49,62],"phenomenon":[33],"in":[34,74,78],"workshop":[36],"due":[37],"signal":[39],"interference,":[40],"human":[41],"error,":[42],"and":[43,86,125],"other":[44],"reasons.":[45],"This":[46],"paper":[47],"proposes":[48],"data-driven":[50],"approach":[51,119],"with":[57,102],"series":[59,64,106],"data.":[60,107],"First,":[61],"time":[63,105],"generative":[66],"adversarial":[67],"network":[68],"(TSDGAN)":[69],"presented":[71],"fill":[73],"missing":[76,115],"data,":[77],"which":[79],"Attention":[80],"LSTM":[81],"serves":[82],"as":[83,88],"generator":[85],"CNN":[87],"discriminator.":[90],"Next,":[91],"An":[92],"Informer":[93],"model":[94],"introduced":[96],"generated":[104],"According":[108],"experimental":[111],"results":[112,122],"under":[113],"different":[114],"rates,":[116],"proposed":[118],"achieves":[120],"better":[121],"than":[123],"traditional":[124],"some":[126],"state-of-the-art":[127],"time-series":[128],"methods.":[130]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387678007","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-05T01:31:53.981817","created_date":"2023-10-17"}