{"id":"https://openalex.org/W4312998741","doi":"https://doi.org/10.1109/ic2e55432.2022.00027","title":"CloudBruno: A Low-Overhead Online Workload Prediction Framework for Cloud Computing","display_name":"CloudBruno: A Low-Overhead Online Workload Prediction Framework for Cloud Computing","publication_year":2022,"publication_date":"2022-09-01","ids":{"openalex":"https://openalex.org/W4312998741","doi":"https://doi.org/10.1109/ic2e55432.2022.00027"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ic2e55432.2022.00027","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5005168496","display_name":"Vinodh Kumaran Jayakumar","orcid":"https://orcid.org/0000-0003-2238-5258"},"institutions":[{"id":"https://openalex.org/I45438204","display_name":"The University of Texas at San Antonio","ror":"https://ror.org/01kd65564","country_code":"US","type":"education","lineage":["https://openalex.org/I45438204"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Vinodh Kumaran Jayakumar","raw_affiliation_strings":["Computer Science, The University of Texas at San Antonio"],"affiliations":[{"raw_affiliation_string":"Computer Science, The University of Texas at San Antonio","institution_ids":["https://openalex.org/I45438204"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081451341","display_name":"Shivani Arbat","orcid":null},"institutions":[{"id":"https://openalex.org/I165733156","display_name":"University of Georgia","ror":"https://ror.org/00te3t702","country_code":"US","type":"education","lineage":["https://openalex.org/I165733156"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shivani Arbat","raw_affiliation_strings":["Computer Science, University of Georgia"],"affiliations":[{"raw_affiliation_string":"Computer Science, University of Georgia","institution_ids":["https://openalex.org/I165733156"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084996425","display_name":"In Kee Kim","orcid":"https://orcid.org/0000-0003-1330-7784"},"institutions":[{"id":"https://openalex.org/I165733156","display_name":"University of Georgia","ror":"https://ror.org/00te3t702","country_code":"US","type":"education","lineage":["https://openalex.org/I165733156"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"In Kee Kim","raw_affiliation_strings":["Computer Science, University of Georgia"],"affiliations":[{"raw_affiliation_string":"Computer Science, University of Georgia","institution_ids":["https://openalex.org/I165733156"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100392222","display_name":"Wei Wang","orcid":"https://orcid.org/0000-0003-2262-2508"},"institutions":[{"id":"https://openalex.org/I45438204","display_name":"The University of Texas at San Antonio","ror":"https://ror.org/01kd65564","country_code":"US","type":"education","lineage":["https://openalex.org/I45438204"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wei Wang","raw_affiliation_strings":["Computer Science, The University of Texas at San Antonio"],"affiliations":[{"raw_affiliation_string":"Computer Science, The University of Texas at San Antonio","institution_ids":["https://openalex.org/I45438204"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.042,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.830548,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"188","last_page":"198"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10101","display_name":"Cloud Computing and Resource Management","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10101","display_name":"Cloud Computing and Resource Management","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10273","display_name":"IoT and Edge/Fog Computing","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9891,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C79974875","wikidata":"https://www.wikidata.org/wiki/Q483639","display_name":"Cloud computing","level":2,"score":0.8967153},{"id":"https://openalex.org/C2778476105","wikidata":"https://www.wikidata.org/wiki/Q628539","display_name":"Workload","level":2,"score":0.88966393},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.84066296},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.6714508},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5193185},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45846164},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3966297},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.35322338},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.12484744}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ic2e55432.2022.00027","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.46}],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"2155096,2202632,2221843,2215359"}],"datasets":[],"versions":[],"referenced_works_count":48,"referenced_works":["https://openalex.org/W1509949292","https://openalex.org/W1689711448","https://openalex.org/W1964940342","https://openalex.org/W1982394025","https://openalex.org/W1984255960","https://openalex.org/W2018836191","https://openalex.org/W2038892579","https://openalex.org/W2064675550","https://openalex.org/W2066618395","https://openalex.org/W2075233755","https://openalex.org/W2076549621","https://openalex.org/W2097998348","https://openalex.org/W2100779981","https://openalex.org/W2119438912","https://openalex.org/W2128400269","https://openalex.org/W2129542763","https://openalex.org/W2131241448","https://openalex.org/W2137708569","https://openalex.org/W2141181087","https://openalex.org/W2141563029","https://openalex.org/W2143039774","https://openalex.org/W2143408306","https://openalex.org/W2143915064","https://openalex.org/W2147210569","https://openalex.org/W2160756722","https://openalex.org/W2163291889","https://openalex.org/W2167200186","https://openalex.org/W2182512642","https://openalex.org/W2560531208","https://openalex.org/W2578510131","https://openalex.org/W2764100055","https://openalex.org/W2791512297","https://openalex.org/W2891974069","https://openalex.org/W2897317087","https://openalex.org/W2922207751","https://openalex.org/W2954358107","https://openalex.org/W2955791536","https://openalex.org/W2965302736","https://openalex.org/W2969851632","https://openalex.org/W3042570676","https://openalex.org/W3044011738","https://openalex.org/W3109073683","https://openalex.org/W4247312490","https://openalex.org/W4255863835","https://openalex.org/W4283809531","https://openalex.org/W4295521014","https://openalex.org/W4299838440","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W986318368","https://openalex.org/W4214892316","https://openalex.org/W2990194547","https://openalex.org/W2547038763","https://openalex.org/W2414054180","https://openalex.org/W2384410913","https://openalex.org/W2352878646","https://openalex.org/W2130149817","https://openalex.org/W2004734601","https://openalex.org/W1480123525"],"abstract_inverted_index":{"Accurate":[0],"prediction":[1,72,101,123],"of":[2,27,43,98,108],"future":[3,11],"incoming":[4],"workloads":[5,44,187],"to":[6,17,24,56,91,142,152,183,220],"cloud":[7,28,216],"applications,":[8],"such":[9],"as":[10,223],"user":[12],"request":[13],"count,":[14],"is":[15,45,51],"critical":[16,23],"proactive":[18],"auto-scaling,":[19],"and":[20,53,111,119,146],"in":[21,64,106],"general,":[22],"the":[25,49,65,96,130],"cost-effectiveness":[26],"deployments.":[29],"However,":[30,69],"designing":[31],"a":[32,57,117,169,214],"generic":[33,118],"predictive":[34],"framework":[35],"that":[36,59,172],"can":[37,54,210],"accurately":[38],"predict":[39],"for":[40,89,168],"any":[41],"types":[42],"difficult,":[46],"especially":[47],"when":[48],"workload":[50,71,100,122,171,226],"dynamic":[52,93],"change":[55],"pattern":[58],"has":[60,180],"not":[61,174],"been":[62],"observed":[63],"training":[66,84,97,148,177,184,190],"data":[67,178],"sets.":[68],"existing":[70,99,153,164],"solutions":[73,102],"typically":[74],"rely":[75],"on":[76,213],"complex":[77],"machine":[78],"learning":[79],"models,":[80],"which":[81,128],"require":[82],"comprehensive":[83,176,189],"data,":[85,191],"making":[86],"it":[87,219],"difficult":[88],"them":[90],"handle":[92],"workloads.":[94],"Moreover,":[95],"are":[103],"also":[104],"expensive":[105,137],"terms":[107],"both":[109],"time":[110],"computing":[112],"resources.":[113],"This":[114],"paper":[115],"presents":[116],"low-cost":[120],"online":[121,225],"framework,":[124],"called":[125],"Cloud":[126,192,208],"Bruno,":[127],"combines":[129],"more":[131],"accurate":[132],"LSTM":[133],"models":[134,141],"with":[135,188],"less":[136],"but":[138],"fast":[139],"SVM":[140],"achieve":[143],"high":[144],"accuracy":[145],"low":[147],"overhead.":[149],"When":[150],"compared":[151],"predictors,":[154],"CloudBruno":[155],"had":[156],"at":[157,196],"least":[158],"8.8":[159],"%":[160,199],"lower":[161],"error":[162,194],"than":[163,201],"deep":[165,203],"learning-based":[166,204],"predictors":[167],"highly-dynamic":[170],"does":[173],"have":[175],"(i.e,":[179],"changes":[181],"unknown":[182],"data).":[185],"For":[186],"Bruno's":[193],"was":[195],"most":[197],"2.5":[198],"higher":[200],"optimized":[202],"predictors.":[205],"More":[206],"importantly,":[207],"Bruno":[209],"effectively":[211],"execute":[212],"free":[215],"CPU,":[217],"allowing":[218],"be":[221],"used":[222],"an":[224],"predictor":[227],"without":[228],"additional":[229],"cost.":[230]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312998741","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":2}],"updated_date":"2024-12-17T05:48:59.112022","created_date":"2023-01-05"}