{"id":"https://openalex.org/W4391149079","doi":"https://doi.org/10.1109/ic-nidc59918.2023.10390890","title":"A Multi-Graph Attention Spatial-Temporal Graph Convolutional Network (MGA-STGCN) for AHP Risk Forecasting","display_name":"A Multi-Graph Attention Spatial-Temporal Graph Convolutional Network (MGA-STGCN) for AHP Risk Forecasting","publication_year":2023,"publication_date":"2023-11-03","ids":{"openalex":"https://openalex.org/W4391149079","doi":"https://doi.org/10.1109/ic-nidc59918.2023.10390890"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ic-nidc59918.2023.10390890","pdf_url":null,"source":{"id":"https://openalex.org/S4363608589","display_name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5049645078","display_name":"Aina Tian","orcid":"https://orcid.org/0000-0002-1029-0705"},"institutions":[{"id":"https://openalex.org/I4210131649","display_name":"China Automotive Engineering Research Institute","ror":"https://ror.org/039jhgf83","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210131649"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"A. Tian Tian","raw_affiliation_strings":["China Automotive Engineering Research Institute Co, LTD, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"China Automotive Engineering Research Institute Co, LTD, Chongqing, China","institution_ids":["https://openalex.org/I4210131649"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101843145","display_name":"Bo Xue","orcid":"https://orcid.org/0000-0002-7295-4853"},"institutions":[{"id":"https://openalex.org/I158842170","display_name":"Chongqing University","ror":"https://ror.org/023rhb549","country_code":"CN","type":"education","lineage":["https://openalex.org/I158842170"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"B. Yingjie Xue","raw_affiliation_strings":["Chongqing university, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"Chongqing university, Chongqing, China","institution_ids":["https://openalex.org/I158842170"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101446644","display_name":"Chao Han","orcid":"https://orcid.org/0000-0001-7919-4386"},"institutions":[{"id":"https://openalex.org/I158842170","display_name":"Chongqing University","ror":"https://ror.org/023rhb549","country_code":"CN","type":"education","lineage":["https://openalex.org/I158842170"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"C. Qingwen Han","raw_affiliation_strings":["Chongqing university, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"Chongqing university, Chongqing, China","institution_ids":["https://openalex.org/I158842170"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114120958","display_name":"D. Lingqiu Zeng","orcid":null},"institutions":[{"id":"https://openalex.org/I158842170","display_name":"Chongqing University","ror":"https://ror.org/023rhb549","country_code":"CN","type":"education","lineage":["https://openalex.org/I158842170"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"D. Lingqiu Zeng","raw_affiliation_strings":["Chongqing university, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"Chongqing university, Chongqing, China","institution_ids":["https://openalex.org/I158842170"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5102978167","display_name":"Ertao Zhou","orcid":"https://orcid.org/0009-0006-6374-8624"},"institutions":[{"id":"https://openalex.org/I158842170","display_name":"Chongqing University","ror":"https://ror.org/023rhb549","country_code":"CN","type":"education","lineage":["https://openalex.org/I158842170"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"E. Xinyu Zhou","raw_affiliation_strings":["Chongqing university, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"Chongqing university, Chongqing, China","institution_ids":["https://openalex.org/I158842170"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"362","last_page":"368"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14413","display_name":"Advanced Technologies in Various Fields","score":0.9784,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12120","display_name":"Air Quality Monitoring and Forecasting","score":0.9666,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/adjacency-matrix","display_name":"Adjacency matrix","score":0.5932439}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7670698},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.6302034},{"id":"https://openalex.org/C180356752","wikidata":"https://www.wikidata.org/wiki/Q727035","display_name":"Adjacency matrix","level":3,"score":0.5932439},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.50266504},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4714409},{"id":"https://openalex.org/C176225458","wikidata":"https://www.wikidata.org/wiki/Q595971","display_name":"Graph database","level":3,"score":0.4418574},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.42027518},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.36708593},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.14884079},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ic-nidc59918.2023.10390890","pdf_url":null,"source":{"id":"https://openalex.org/S4363608589","display_name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W2062340241","https://openalex.org/W2613328025","https://openalex.org/W2764090692","https://openalex.org/W2968992043","https://openalex.org/W3027983943","https://openalex.org/W3123909522","https://openalex.org/W4206614401","https://openalex.org/W4301380991"],"related_works":["https://openalex.org/W4384822840","https://openalex.org/W433303270","https://openalex.org/W4321381909","https://openalex.org/W398843157","https://openalex.org/W3209493708","https://openalex.org/W3115442681","https://openalex.org/W3092140405","https://openalex.org/W2551731678","https://openalex.org/W2391000461","https://openalex.org/W1990151506"],"abstract_inverted_index":{"We":[0,51],"propose":[1],"a":[2],"Multi-graph":[3],"Attention":[4],"spatial-temporal":[5],"graph":[6,60],"convolutional":[7],"network":[8],"(MGA-STGCN)":[9],"for":[10],"AHP":[11],"risk":[12,120],"forecasting.":[13],"To":[14],"describe":[15],"the":[16,22,53,59,63,71,75,82,85,104,108,113,116,118,125,128,138,150],"temporal":[17],"and":[18,41,48,81,124,146,155],"spatial":[19,68],"features":[20],"of":[21,28,84,115,127,140],"area,":[23],"we":[24,93],"use":[25,52],"different":[26],"kinds":[27],"dataset":[29],"such":[30],"as":[31],"satellite":[32,89],"images,":[33],"crash":[34],"records,":[35,38],"taxi":[36],"trip":[37],"weather":[39],"records":[40],"so":[42],"on":[43],"to":[44,57,65,102],"construct":[45,58],"feature":[46],"matrix":[47,61],"adjacency":[49],"matrix.":[50],"multi-graph":[54],"fusion":[55],"unit":[56,101],"between":[62,74],"blocks":[64,77],"reflect":[66],"their":[67],"relationship,":[69],"including":[70],"distance":[72],"relationship":[73],"two":[76,86],"in":[78,88],"geographical":[79],"location":[80],"similarity":[83],"grids":[87],"images.":[90],"In":[91],"addition,":[92],"improve":[94],"STGCN":[95],"by":[96],"introducing":[97],"an":[98],"additional":[99],"attention":[100],"help":[103],"model":[105,129],"adaptively":[106],"allocate":[107],"input":[109],"data.":[110],"After":[111],"training":[112],"parameters":[114],"model,":[117],"regional":[119],"prediction":[121,148,156],"is":[122,130,133],"simulated,":[123],"performance":[126,154],"evaluated.":[131],"It":[132],"found":[134],"that":[135],"compared":[136],"with":[137],"baseline":[139],"traditional":[141],"linear":[142],"regression,":[143],"CNN,":[144],"LSTM":[145],"other":[147],"models,":[149],"MGA-STGCN":[151],"has":[152],"better":[153],"accuracy.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391149079","counts_by_year":[],"updated_date":"2025-01-04T13:13:32.356555","created_date":"2024-01-24"}