{"id":"https://openalex.org/W2734328508","doi":"https://doi.org/10.1109/i2mtc.2017.7969772","title":"Comparative evaluation of on-line missing data regression techniques in intrapartum FHR measurements","display_name":"Comparative evaluation of on-line missing data regression techniques in intrapartum FHR measurements","publication_year":2017,"publication_date":"2017-05-01","ids":{"openalex":"https://openalex.org/W2734328508","doi":"https://doi.org/10.1109/i2mtc.2017.7969772","mag":"2734328508"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/i2mtc.2017.7969772","pdf_url":null,"source":{"id":"https://openalex.org/S4363607934","display_name":"2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5008004705","display_name":"Guglielmo Frigo","orcid":"https://orcid.org/0000-0002-5762-4354"},"institutions":[{"id":"https://openalex.org/I138689650","display_name":"University of Padua","ror":"https://ror.org/00240q980","country_code":"IT","type":"funder","lineage":["https://openalex.org/I138689650"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Guglielmo Frigo","raw_affiliation_strings":["Department of Information Engineering, University of Padova, Padova, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering, University of Padova, Padova, Italy","institution_ids":["https://openalex.org/I138689650"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5103131953","display_name":"Giada Giorgi","orcid":"https://orcid.org/0000-0001-9498-4722"},"institutions":[{"id":"https://openalex.org/I138689650","display_name":"University of Padua","ror":"https://ror.org/00240q980","country_code":"IT","type":"funder","lineage":["https://openalex.org/I138689650"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Giada Giorgi","raw_affiliation_strings":["Department of Information Engineering, University of Padova, Padova, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering, University of Padova, Padova, Italy","institution_ids":["https://openalex.org/I138689650"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.88,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":10,"citation_normalized_percentile":{"value":0.70897,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11184","display_name":"Neonatal and fetal brain pathology","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2735","display_name":"Pediatrics, Perinatology and Child Health"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/cardiotocography","display_name":"Cardiotocography","score":0.83593595},{"id":"https://openalex.org/keywords/line","display_name":"Line (geometry)","score":0.58526874},{"id":"https://openalex.org/keywords/signal","display_name":"SIGNAL (programming language)","score":0.43444186}],"concepts":[{"id":"https://openalex.org/C2776046940","wikidata":"https://www.wikidata.org/wiki/Q886292","display_name":"Cardiotocography","level":4,"score":0.83593595},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6691638},{"id":"https://openalex.org/C198352243","wikidata":"https://www.wikidata.org/wiki/Q37105","display_name":"Line (geometry)","level":2,"score":0.58526874},{"id":"https://openalex.org/C48921125","wikidata":"https://www.wikidata.org/wiki/Q10861030","display_name":"Linear regression","level":2,"score":0.5424907},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.5348984},{"id":"https://openalex.org/C3020626262","wikidata":"https://www.wikidata.org/wiki/Q886292","display_name":"Fetal heart rate","level":4,"score":0.4949171},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.46628973},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.44053414},{"id":"https://openalex.org/C2779843651","wikidata":"https://www.wikidata.org/wiki/Q7390335","display_name":"SIGNAL (programming language)","level":2,"score":0.43444186},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37849164},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32984838},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.24266192},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.21155855},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12218809},{"id":"https://openalex.org/C172680121","wikidata":"https://www.wikidata.org/wiki/Q26513","display_name":"Fetus","level":3,"score":0.11786786},{"id":"https://openalex.org/C2779234561","wikidata":"https://www.wikidata.org/wiki/Q11995","display_name":"Pregnancy","level":2,"score":0.110325396},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/i2mtc.2017.7969772","pdf_url":null,"source":{"id":"https://openalex.org/S4363607934","display_name":"2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Good health and well-being","score":0.52,"id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1984769176","https://openalex.org/W2016739419","https://openalex.org/W2089742427","https://openalex.org/W2115908805","https://openalex.org/W2117399799","https://openalex.org/W2119650563","https://openalex.org/W2124691611","https://openalex.org/W2137768350","https://openalex.org/W2162800060","https://openalex.org/W2171630164","https://openalex.org/W2324940279"],"related_works":["https://openalex.org/W4389075335","https://openalex.org/W4311546016","https://openalex.org/W2911541964","https://openalex.org/W2496058309","https://openalex.org/W2397685491","https://openalex.org/W2298953558","https://openalex.org/W2295596238","https://openalex.org/W2127966554","https://openalex.org/W2111296261","https://openalex.org/W1542081249"],"abstract_inverted_index":{"Cardiotocography":[0],"is":[1,58],"a":[2,88],"measurement":[3],"technique":[4],"used":[5],"for":[6,116],"fetal":[7,28],"health":[8],"status":[9],"assessment":[10],"in":[11,103],"antepartum":[12],"and":[13,32],"intrapartum":[14],"monitoring.":[15],"A":[16],"typical":[17],"cardiotocogram":[18],"recording":[19],"consists":[20],"of":[21,91,105,126],"two":[22],"simultaneously":[23],"acquired":[24,128],"signals,":[25],"namely":[26],"the":[27,33,38,117,122,127],"hearth":[29],"rate":[30],"(FHR)":[31],"uterine":[34],"activity":[35],"(UA).":[36],"Unfortunately,":[37],"FHR":[39],"recordings":[40],"suffer":[41],"from":[42,72],"frequent":[43],"invalid":[44],"or":[45,51,65],"missing":[46],"samples,":[47,93],"due":[48],"to":[49,120],"artifacts":[50],"sensors":[52],"misfunctions.":[53],"In":[54,76],"literature,":[55],"this":[56,77],"problem":[57],"typically":[59],"solved":[60],"by":[61],"simplistic":[62],"linear":[63],"interpolations":[64],"sophisticated":[66],"algorithms,":[67],"whose":[68],"computational":[69],"complexity":[70],"prevents":[71],"an":[73],"on-line":[74,97],"implementation.":[75,98],"paper,":[78],"we":[79],"propose":[80],"five":[81],"regression":[82,106],"techniques":[83],"which":[84,114],"rely":[85],"exclusively":[86],"on":[87],"reduced":[89],"set":[90],"past":[92],"i.e.":[94],"compliant":[95],"with":[96],"We":[99],"characterize":[100],"their":[101],"performances":[102],"terms":[104],"error,":[107],"as":[108,110],"well":[109],"specific":[111],"clinical":[112],"indices":[113],"account":[115],"capability":[118],"not":[119],"distort":[121],"original":[123],"information":[124],"content":[125],"signal.":[129]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2734328508","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":3},{"year":2018,"cited_by_count":2}],"updated_date":"2025-04-17T23:06:50.472971","created_date":"2017-07-21"}