{"id":"https://openalex.org/W1561771295","doi":"https://doi.org/10.1109/hsi.2015.7170670","title":"Detecting abandoned objects in crowded scenes of surveillance videos using adaptive dual background model","display_name":"Detecting abandoned objects in crowded scenes of surveillance videos using adaptive dual background model","publication_year":2015,"publication_date":"2015-06-01","ids":{"openalex":"https://openalex.org/W1561771295","doi":"https://doi.org/10.1109/hsi.2015.7170670","mag":"1561771295"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/hsi.2015.7170670","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5112599635","display_name":"Wahyono Wahyono","orcid":"https://orcid.org/0000-0002-2639-8411"},"institutions":[{"id":"https://openalex.org/I40542001","display_name":"University of Ulsan","ror":"https://ror.org/02c2f8975","country_code":"KR","type":"education","lineage":["https://openalex.org/I40542001"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"None Wahyono","raw_affiliation_strings":["Graduate School of Electrical Engineering, University of Ulsan, Korea 680-749"],"affiliations":[{"raw_affiliation_string":"Graduate School of Electrical Engineering, University of Ulsan, Korea 680-749","institution_ids":["https://openalex.org/I40542001"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043641801","display_name":"Alexander Filonenko","orcid":"https://orcid.org/0000-0003-1666-4023"},"institutions":[{"id":"https://openalex.org/I40542001","display_name":"University of Ulsan","ror":"https://ror.org/02c2f8975","country_code":"KR","type":"education","lineage":["https://openalex.org/I40542001"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Alexander Filonenko","raw_affiliation_strings":["Graduate School of Electrical Engineering, University of Ulsan, Korea 680-749"],"affiliations":[{"raw_affiliation_string":"Graduate School of Electrical Engineering, University of Ulsan, Korea 680-749","institution_ids":["https://openalex.org/I40542001"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5044448641","display_name":"Kang-Hyun Jo","orcid":"https://orcid.org/0000-0002-4937-7082"},"institutions":[{"id":"https://openalex.org/I40542001","display_name":"University of Ulsan","ror":"https://ror.org/02c2f8975","country_code":"KR","type":"education","lineage":["https://openalex.org/I40542001"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Kang-Hyun Jo","raw_affiliation_strings":["Graduate School of Electrical Engineering, University of Ulsan, Korea 680-749"],"affiliations":[{"raw_affiliation_string":"Graduate School of Electrical Engineering, University of Ulsan, Korea 680-749","institution_ids":["https://openalex.org/I40542001"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.908,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":14,"citation_normalized_percentile":{"value":0.760299,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":null,"issue":null,"first_page":"224","last_page":"227"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12597","display_name":"Fire Detection and Safety Systems","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.7695707},{"id":"https://openalex.org/keywords/foreground-detection","display_name":"Foreground detection","score":0.45343298}],"concepts":[{"id":"https://openalex.org/C32653426","wikidata":"https://www.wikidata.org/wiki/Q3813641","display_name":"Background subtraction","level":3,"score":0.9065312},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7738083},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7710133},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.7695707},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.7643607},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.6619378},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.4975691},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.45950955},{"id":"https://openalex.org/C2779769447","wikidata":"https://www.wikidata.org/wiki/Q3813641","display_name":"Foreground detection","level":4,"score":0.45343298},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.44270757},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3624212},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/hsi.2015.7170670","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.69}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W1507720791","https://openalex.org/W187922895","https://openalex.org/W1967617464","https://openalex.org/W2043939269","https://openalex.org/W2055447791","https://openalex.org/W2140982548","https://openalex.org/W2151743407","https://openalex.org/W2164400509","https://openalex.org/W2547771115"],"related_works":["https://openalex.org/W4298195641","https://openalex.org/W3010714307","https://openalex.org/W2953123162","https://openalex.org/W2188430267","https://openalex.org/W2123129869","https://openalex.org/W2105103921","https://openalex.org/W2086414697","https://openalex.org/W2028059897","https://openalex.org/W1999137714","https://openalex.org/W1987287817"],"abstract_inverted_index":{"Detecting":[0],"an":[1],"abandoned":[2,30,137],"object":[3,31,138],"in":[4,68,139],"crowded":[5,140],"scenes":[6],"of":[7,52,96],"surveillance":[8],"videos":[9],"becomes":[10],"more":[11],"complex":[12],"task":[13],"due":[14],"to":[15,28,70,82,135],"occlusions,":[16],"lighting":[17,58],"changes,":[18],"and":[19,76,94,109,124,133],"other":[20],"factors.":[21],"In":[22,39],"this":[23],"paper,":[24],"a":[25],"new":[26],"framework":[27],"detect":[29,136],"using":[32,62,116],"dual":[33],"background":[34,44],"model":[35,45],"subtraction":[36],"is":[37,46,65,131],"presented.":[38],"our":[40,117,129],"system,":[41],"the":[42,84,97],"adaptive":[43],"generated":[47],"based":[48],"on":[49,102],"statistical":[50],"information":[51],"pixel":[53],"intensity":[54],"that":[55,128],"robust":[56,134],"against":[57],"condition.":[59],"Foreground":[60],"analysis":[61],"geometrical":[63],"properties":[64],"then":[66,80],"applied":[67],"order":[69],"filter":[71],"out":[72],"false":[73],"region.":[74],"Human":[75],"vehicle":[77],"detection":[78],"are":[79,100,113],"integrated":[81],"verify":[83],"region":[85],"as":[86,107],"static":[87],"object,":[88],"human":[89],"or":[90],"vehicle.":[91],"The":[92,122],"robustness":[93],"efficiency":[95],"proposed":[98],"method":[99,130],"tested":[101,115],"several":[103],"public":[104],"databases":[105],"such":[106],"i-LIDS":[108],"PETS2006":[110],"datasets.":[111],"These":[112],"also":[114],"own":[118],"dataset,":[119],"ISLab":[120],"dataset.":[121],"test":[123],"evaluation":[125],"result":[126],"show":[127],"efficient":[132],"scenes.":[141]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1561771295","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":5}],"updated_date":"2024-12-10T04:17:58.832067","created_date":"2016-06-24"}