{"id":"https://openalex.org/W2990620695","doi":"https://doi.org/10.1109/hpec.2019.8916253","title":"Embedded GPU Cluster Computing Framework for Inference of Convolutional Neural Networks","display_name":"Embedded GPU Cluster Computing Framework for Inference of Convolutional Neural Networks","publication_year":2019,"publication_date":"2019-09-01","ids":{"openalex":"https://openalex.org/W2990620695","doi":"https://doi.org/10.1109/hpec.2019.8916253","mag":"2990620695"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/hpec.2019.8916253","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5030984415","display_name":"Evan T. Kain","orcid":null},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"funder","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Evan Kain","raw_affiliation_strings":["NSF Center for Space, High-performance, and Resilient Computing (SHREC), University of Pittsburgh Pittsburgh, PA"],"affiliations":[{"raw_affiliation_string":"NSF Center for Space, High-performance, and Resilient Computing (SHREC), University of Pittsburgh Pittsburgh, PA","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021781237","display_name":"Diego Wildenstein","orcid":null},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"funder","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Diego Wildenstein","raw_affiliation_strings":["School of Electrical, Computer, and Energy Engineering, Arizona State University Tempe, AZ"],"affiliations":[{"raw_affiliation_string":"School of Electrical, Computer, and Energy Engineering, Arizona State University Tempe, AZ","institution_ids":["https://openalex.org/I55732556"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5028219432","display_name":"Andrew C. Pineda","orcid":null},"institutions":[{"id":"https://openalex.org/I1280414376","display_name":"United States Air Force Research Laboratory","ror":"https://ror.org/02e2egq70","country_code":"US","type":"funder","lineage":["https://openalex.org/I1280414376","https://openalex.org/I1330347796","https://openalex.org/I4210102105","https://openalex.org/I4389425425"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Andrew C. Pineda","raw_affiliation_strings":["Spacecraft Component Technology Branch, Space Vehicles Directorate U.S. Air Force Research Laboratory Kirtland AFB, NM"],"affiliations":[{"raw_affiliation_string":"Spacecraft Component Technology Branch, Space Vehicles Directorate U.S. Air Force Research Laboratory Kirtland AFB, NM","institution_ids":["https://openalex.org/I1280414376"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.11,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.506942,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.9853,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/speedup","display_name":"Speedup","score":0.66638},{"id":"https://openalex.org/keywords/testbed","display_name":"Testbed","score":0.5429504},{"id":"https://openalex.org/keywords/parallel-processing","display_name":"Parallel processing","score":0.47741497},{"id":"https://openalex.org/keywords/graphics-processing-unit","display_name":"Graphics processing unit","score":0.44514626}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8317213},{"id":"https://openalex.org/C68339613","wikidata":"https://www.wikidata.org/wiki/Q1549489","display_name":"Speedup","level":2,"score":0.66638},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5764737},{"id":"https://openalex.org/C31395832","wikidata":"https://www.wikidata.org/wiki/Q1318674","display_name":"Testbed","level":2,"score":0.5429504},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.5312336},{"id":"https://openalex.org/C50630238","wikidata":"https://www.wikidata.org/wiki/Q971505","display_name":"General-purpose computing on graphics processing units","level":3,"score":0.5224311},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.52081263},{"id":"https://openalex.org/C106515295","wikidata":"https://www.wikidata.org/wiki/Q26806595","display_name":"Parallel processing","level":2,"score":0.47741497},{"id":"https://openalex.org/C101468663","wikidata":"https://www.wikidata.org/wiki/Q1620158","display_name":"Modular design","level":2,"score":0.46909606},{"id":"https://openalex.org/C2779851693","wikidata":"https://www.wikidata.org/wiki/Q183484","display_name":"Graphics processing unit","level":2,"score":0.44514626},{"id":"https://openalex.org/C21442007","wikidata":"https://www.wikidata.org/wiki/Q1027879","display_name":"Graphics","level":2,"score":0.4351883},{"id":"https://openalex.org/C83283714","wikidata":"https://www.wikidata.org/wiki/Q121117","display_name":"Supercomputer","level":2,"score":0.43384305},{"id":"https://openalex.org/C152124472","wikidata":"https://www.wikidata.org/wiki/Q1204361","display_name":"Redundancy (engineering)","level":2,"score":0.41832048},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2048794},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.11066908},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.099894166},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.09863564},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/hpec.2019.8916253","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.41,"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":7,"referenced_works":["https://openalex.org/W1849277567","https://openalex.org/W2022253415","https://openalex.org/W2504462168","https://openalex.org/W2744971998","https://openalex.org/W2758087372","https://openalex.org/W2793218141","https://openalex.org/W63141727"],"related_works":["https://openalex.org/W3158047141","https://openalex.org/W2388314963","https://openalex.org/W2167646277","https://openalex.org/W2151046618","https://openalex.org/W2063573318","https://openalex.org/W2027443981","https://openalex.org/W1972148443","https://openalex.org/W1969233021","https://openalex.org/W1656096860","https://openalex.org/W151175334"],"abstract_inverted_index":{"The":[0],"growing":[1],"need":[2],"for":[3,7],"on-board":[4],"image":[5,42],"processing":[6,43,88,103],"space":[8],"vehicles":[9],"requires":[10],"computing":[11],"solutions":[12],"that":[13],"are":[14,105],"both":[15,29],"low-power":[16,22],"and":[17],"high-performance.":[18],"Parallel":[19],"computation":[20],"using":[21],"embedded":[23],"Graphics":[24],"Processing":[25],"Units":[26],"(GPUs)":[27],"satisfy":[28],"requirements.":[30],"Our":[31,62],"experiment":[32],"involves":[33],"the":[34,55,108,112,123],"use":[35],"of":[36,40,65,82,126],"OpenMPI":[37],"domain":[38],"decomposition":[39],"an":[41],"algorithm":[44],"based":[45],"upon":[46],"a":[47,80,95],"pre-trained":[48],"convolutional":[49],"neural":[50],"network":[51],"(CNN)":[52],"developed":[53],"by":[54],"U.S.":[56],"Air":[57],"Force":[58],"Research":[59],"Laboratory":[60],"(AFRL).":[61],"testbed":[63],"consists":[64],"six":[66,87],"NVIDIA":[67],"Jetson":[68],"TX2":[69],"development":[70],"boards":[71],"operating":[72],"in":[73,79,98,116],"parallel.":[74],"This":[75,90],"parallel":[76,99],"framework":[77],"results":[78],"speedup":[81],"$4.3":[83],"\\times":[84],"$":[85],"on":[86],"nodes.":[89],"approach":[91],"also":[92,121],"leads":[93],"to":[94,107,118,132],"linear":[96],"decay":[97],"efficiency":[100],"as":[101],"more":[102],"nodes":[104],"added":[106],"network.":[109],"By":[110],"replicating":[111],"data":[113],"across":[114],"processors":[115],"addition":[117],"distributing,":[119],"we":[120],"characterize":[122],"best-case":[124],"impact":[125],"adding":[127],"triple":[128],"modular":[129],"redundancy":[130],"(TMR)":[131],"our":[133],"application.":[134]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2990620695","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2025-04-21T23:23:10.386577","created_date":"2019-12-05"}