{"id":"https://openalex.org/W2991607741","doi":"https://doi.org/10.1109/hpec.2019.8916237","title":"A Novel Design of Adaptive and Hierarchical Convolutional Neural Networks using Partial Reconfiguration on FPGA","display_name":"A Novel Design of Adaptive and Hierarchical Convolutional Neural Networks using Partial Reconfiguration on FPGA","publication_year":2019,"publication_date":"2019-09-01","ids":{"openalex":"https://openalex.org/W2991607741","doi":"https://doi.org/10.1109/hpec.2019.8916237","mag":"2991607741"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/hpec.2019.8916237","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1909.05653","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003618430","display_name":"Mohammad Farhadi","orcid":"https://orcid.org/0000-0001-6303-1750"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"education","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mohammad Farhadi","raw_affiliation_strings":["Arizona State University Tempe, AZ, USA"],"affiliations":[{"raw_affiliation_string":"Arizona State University Tempe, AZ, USA","institution_ids":["https://openalex.org/I55732556"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039154396","display_name":"Mehdi Ghasemi","orcid":"https://orcid.org/0000-0003-3947-5639"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"education","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mehdi Ghasemi","raw_affiliation_strings":["Arizona State University Tempe, AZ, USA"],"affiliations":[{"raw_affiliation_string":"Arizona State University Tempe, AZ, USA","institution_ids":["https://openalex.org/I55732556"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5002278578","display_name":"Yezhou Yang","orcid":"https://orcid.org/0000-0003-0126-8976"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"education","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yezhou Yang","raw_affiliation_strings":["Arizona State University Tempe, AZ, USA"],"affiliations":[{"raw_affiliation_string":"Arizona State University Tempe, AZ, USA","institution_ids":["https://openalex.org/I55732556"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.353,"has_fulltext":false,"cited_by_count":27,"citation_normalized_percentile":{"value":0.999873,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11992","display_name":"CCD and CMOS Imaging Sensors","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/control-reconfiguration","display_name":"Control reconfiguration","score":0.76625675},{"id":"https://openalex.org/keywords/neural-network-architectures","display_name":"Neural Network Architectures","score":0.522941},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.511675},{"id":"https://openalex.org/keywords/image-recognition","display_name":"Image Recognition","score":0.503817},{"id":"https://openalex.org/keywords/mpsoc","display_name":"MPSoC","score":0.47759938}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8835852},{"id":"https://openalex.org/C42935608","wikidata":"https://www.wikidata.org/wiki/Q190411","display_name":"Field-programmable gate array","level":2,"score":0.7976934},{"id":"https://openalex.org/C119701452","wikidata":"https://www.wikidata.org/wiki/Q5165881","display_name":"Control reconfiguration","level":2,"score":0.76625675},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.74353385},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.63416195},{"id":"https://openalex.org/C157764524","wikidata":"https://www.wikidata.org/wiki/Q1383412","display_name":"Throughput","level":3,"score":0.5913435},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5370997},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49472424},{"id":"https://openalex.org/C2777187653","wikidata":"https://www.wikidata.org/wiki/Q975106","display_name":"MPSoC","level":3,"score":0.47759938},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.45964646},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.43917766},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.42440245},{"id":"https://openalex.org/C206345919","wikidata":"https://www.wikidata.org/wiki/Q20380951","display_name":"Resource (disambiguation)","level":2,"score":0.41351718},{"id":"https://openalex.org/C118524514","wikidata":"https://www.wikidata.org/wiki/Q173212","display_name":"Computer architecture","level":1,"score":0.3905596},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.36855817},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.28698856},{"id":"https://openalex.org/C118021083","wikidata":"https://www.wikidata.org/wiki/Q610398","display_name":"System on a chip","level":2,"score":0.17144611},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.14821604},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.07701743},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/hpec.2019.8916237","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1909.05653","pdf_url":"https://arxiv.org/pdf/1909.05653","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1909.05653","pdf_url":"https://arxiv.org/pdf/1909.05653","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1533861849","https://openalex.org/W1724438581","https://openalex.org/W1849277567","https://openalex.org/W1934410531","https://openalex.org/W1974414477","https://openalex.org/W2029016069","https://openalex.org/W2097117768","https://openalex.org/W2114977008","https://openalex.org/W2119112357","https://openalex.org/W2119144962","https://openalex.org/W2134670479","https://openalex.org/W2134797427","https://openalex.org/W2163605009","https://openalex.org/W2164598857","https://openalex.org/W2168231600","https://openalex.org/W2179423374","https://openalex.org/W2194775991","https://openalex.org/W2276486856","https://openalex.org/W2300242332","https://openalex.org/W2335728318","https://openalex.org/W2403062259","https://openalex.org/W2413983136","https://openalex.org/W2550742086","https://openalex.org/W2561981131","https://openalex.org/W2565125333","https://openalex.org/W2570343428","https://openalex.org/W2739542029","https://openalex.org/W2756477004","https://openalex.org/W2763068163","https://openalex.org/W2885228218","https://openalex.org/W2888088168","https://openalex.org/W2962677625","https://openalex.org/W2963000224","https://openalex.org/W2963393494","https://openalex.org/W2963674932","https://openalex.org/W2964062240","https://openalex.org/W2964330500","https://openalex.org/W3118608800","https://openalex.org/W4295116917","https://openalex.org/W766930550"],"related_works":["https://openalex.org/W2941434274","https://openalex.org/W2810427553","https://openalex.org/W2808484818","https://openalex.org/W2385177848","https://openalex.org/W2340647897","https://openalex.org/W2135053878","https://openalex.org/W2103526090","https://openalex.org/W2096938998","https://openalex.org/W1760305469","https://openalex.org/W1574948540"],"abstract_inverted_index":{"Nowadays":[0],"most":[1],"research":[2],"in":[3,181],"visual":[4],"recognition":[5,23,43],"using":[6,51,121],"Convolutional":[7],"Neural":[8],"Networks":[9],"(CNNs)":[10],"follows":[11],"the":[12,26,35,59,65,72,80,90,112,118,122,135,148,169,179,182,196,200],"\u201cdeeper":[13],"model":[14,30,124],"with":[15,64,97,199],"deeper":[16,29,123],"confidence\u201d":[17],"belief":[18],"to":[19,88,130,143,161],"gain":[20],"a":[21,39,45,94,108,115],"higher":[22],"accuracy.":[24],"At":[25],"same":[27],"time,":[28],"brings":[31],"heavier":[32],"computation.":[33],"On":[34],"other":[36],"hand,":[37],"for":[38,111,187,208],"large":[40],"chunk":[41],"of":[42,61,137,178,202],"challenges,":[44],"system":[46],"can":[47,194],"classify":[48],"images":[49,205],"correctly":[50],"simple":[52],"models":[53],"or":[54,127],"so-called":[55],"shallow":[56,84],"networks.":[57],"Moreover,":[58],"implementation":[60],"CNNs":[62,113,146],"faces":[63],"size,":[66],"weight,":[67],"and":[68,85,99,106,158,176,190],"energy":[69],"constraints":[70],"on":[71,93,133,147,155],"embedded":[73],"devices.":[74],"In":[75],"this":[76,102],"paper,":[77],"we":[78,104],"implement":[79],"adaptive":[81],"switching":[82],"between":[83],"deep":[86,145],"networks":[87],"reach":[89],"highest":[91],"throughput":[92,201],"resource-constrained":[95],"MPSoC":[96],"CPU":[98],"FPGA.":[100],"To":[101],"end,":[103],"develop":[105],"present":[107],"novel":[109],"architecture":[110],"where":[114],"gate":[116],"makes":[117],"decision":[119,170],"whether":[120],"is":[125,185],"beneficial":[126],"not.":[128],"Due":[129],"resource":[131],"limitation":[132],"FPGA,":[134],"idea":[136],"partial":[138],"reconfiguration":[139],"has":[140],"been":[141],"used":[142],"accommodate":[144],"FPGA":[149],"resources.":[150],"We":[151],"report":[152],"experimental":[153],"results":[154],"CIFAR-10,":[156],"CIFAR-100,":[157,189],"SVHN":[159,191,209],"datasets":[160],"validate":[162],"our":[163],"approach.":[164],"Using":[165],"confidence":[166],"metric":[167],"as":[168],"making":[171],"factor,":[172],"only":[173],"69.8%,":[174],"71.8%,":[175],"43.8%":[177],"computation":[180],"deepest":[183],"network":[184],"done":[186],"CIFAR10,":[188],"while":[192],"it":[193],"maintain":[195],"desired":[197],"accuracy":[198],"around":[203],"400":[204],"per":[206],"second":[207],"dataset.":[210],"https://github.com/mfarhadi/AHCNN.":[211]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2991607741","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":9},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":1}],"updated_date":"2024-12-05T11:26:46.597823","created_date":"2019-12-05"}