{"id":"https://openalex.org/W2550291951","doi":"https://doi.org/10.1109/healthcom.2016.7749493","title":"ST-segment and T-wave anomalies prediction in an ECG data using RUSBoost","display_name":"ST-segment and T-wave anomalies prediction in an ECG data using RUSBoost","publication_year":2016,"publication_date":"2016-09-01","ids":{"openalex":"https://openalex.org/W2550291951","doi":"https://doi.org/10.1109/healthcom.2016.7749493","mag":"2550291951"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/healthcom.2016.7749493","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057133745","display_name":"Medina Hadjem","orcid":null},"institutions":[{"id":"https://openalex.org/I110736937","display_name":"D\u00e9l\u00e9gation Paris 5","ror":"https://ror.org/02e0y6e06","country_code":"FR","type":"government","lineage":["https://openalex.org/I110736937","https://openalex.org/I154526488"]},{"id":"https://openalex.org/I204730241","display_name":"Universit\u00e9 Paris Cit\u00e9","ror":"https://ror.org/05f82e368","country_code":"FR","type":"funder","lineage":["https://openalex.org/I204730241"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Medina Hadjem","raw_affiliation_strings":["Paris Descartes University, France"],"affiliations":[{"raw_affiliation_string":"Paris Descartes University, France","institution_ids":["https://openalex.org/I110736937","https://openalex.org/I204730241"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086784630","display_name":"Farid Na\u00eft\u2010Abdesselam","orcid":"https://orcid.org/0000-0002-5042-5387"},"institutions":[{"id":"https://openalex.org/I204730241","display_name":"Universit\u00e9 Paris Cit\u00e9","ror":"https://ror.org/05f82e368","country_code":"FR","type":"funder","lineage":["https://openalex.org/I204730241"]},{"id":"https://openalex.org/I110736937","display_name":"D\u00e9l\u00e9gation Paris 5","ror":"https://ror.org/02e0y6e06","country_code":"FR","type":"government","lineage":["https://openalex.org/I110736937","https://openalex.org/I154526488"]},{"id":"https://openalex.org/I180949307","display_name":"Illinois Institute of Technology","ror":"https://ror.org/037t3ry66","country_code":"US","type":"funder","lineage":["https://openalex.org/I180949307"]}],"countries":["FR","US"],"is_corresponding":false,"raw_author_name":"Farid Nait-Abdesselam","raw_affiliation_strings":["Illinois Institute of Technology, USA","Paris Descartes University, France"],"affiliations":[{"raw_affiliation_string":"Paris Descartes University, France","institution_ids":["https://openalex.org/I204730241","https://openalex.org/I110736937"]},{"raw_affiliation_string":"Illinois Institute of Technology, USA","institution_ids":["https://openalex.org/I180949307"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5060316178","display_name":"Ashfaq Khokhar","orcid":"https://orcid.org/0000-0002-6504-8502"},"institutions":[{"id":"https://openalex.org/I180949307","display_name":"Illinois Institute of Technology","ror":"https://ror.org/037t3ry66","country_code":"US","type":"funder","lineage":["https://openalex.org/I180949307"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ashfaq Khokhar","raw_affiliation_strings":["Illinois Institute of Technology, USA"],"affiliations":[{"raw_affiliation_string":"Illinois Institute of Technology, USA","institution_ids":["https://openalex.org/I180949307"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":27,"citation_normalized_percentile":{"value":0.996377,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9836,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9681,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting","score":0.649518}],"concepts":[{"id":"https://openalex.org/C64869954","wikidata":"https://www.wikidata.org/wiki/Q1859747","display_name":"False positive paradox","level":2,"score":0.7793008},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67455775},{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.649518},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57719934},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.5478338},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5289222},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46959674},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.44157752},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39397666}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/healthcom.2016.7749493","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://hal.science/hal-01424751","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://hal.archives-ouvertes.fr/hal-01424751","pdf_url":null,"source":{"id":"https://openalex.org/S4306402512","display_name":"HAL (Le Centre pour la Communication Scientifique Directe)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1294671590","host_organization_name":"Centre National de la Recherche Scientifique","host_organization_lineage":["https://openalex.org/I1294671590"],"host_organization_lineage_names":["Centre National de la Recherche Scientifique"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.41,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1576704015","https://openalex.org/W1988790447","https://openalex.org/W1999784185","https://openalex.org/W2037157990","https://openalex.org/W2041110545","https://openalex.org/W2050123950","https://openalex.org/W2052873190","https://openalex.org/W2069253401","https://openalex.org/W2096363641","https://openalex.org/W2096945460","https://openalex.org/W2097658930","https://openalex.org/W2110493322","https://openalex.org/W2143635047","https://openalex.org/W2146254945","https://openalex.org/W2152883669","https://openalex.org/W2163665445"],"related_works":["https://openalex.org/W4394984040","https://openalex.org/W4388550696","https://openalex.org/W4366990902","https://openalex.org/W4317732970","https://openalex.org/W4313640622","https://openalex.org/W4242380336","https://openalex.org/W3108206494","https://openalex.org/W3082059448","https://openalex.org/W2739726746","https://openalex.org/W2073883415"],"abstract_inverted_index":{"Electrocardiogram":[0],"(ECG)":[1],"datasets":[2],"are":[3,144],"among":[4],"the":[5,93,98,122,136,151],"most":[6],"challenging":[7],"records":[8],"that":[9],"have":[10],"been":[11,107],"widely":[12],"studied":[13],"for":[14,134],"early":[15],"automatic":[16,27],"prediction":[17,63,94],"of":[18,33,43,64,111,154],"cardiac":[19],"anomalies.":[20],"In":[21,46],"order":[22],"to":[23,54,71,90],"achieve":[24],"high":[25,41],"performance":[26,95],"prediction,":[28],"existing":[29,152],"works":[30],"make":[31],"use":[32],"complex":[34],"and":[35,59,67,84,96,121,131,142,147],"time":[36],"consuming":[37],"techniques":[38,89],"and/or":[39],"show":[40,125],"rates":[42],"false":[44,132],"positives.":[45],"this":[47],"paper,":[48],"we":[49],"introduce":[50],"a":[51,116,126],"new":[52],"method":[53,78],"analyze":[55],"an":[56,61],"ECG":[57,118],"dataset":[58,119],"perform":[60],"efficient":[62],"7":[65,112,137],"ST-segment":[66],"T-wave":[68],"anomalies":[69],"related":[70,156],"Myocardial":[72],"Infarction":[73],"(MI)":[74],"or":[75],"Ischemia.":[76],"Our":[77],"combines":[79],"both":[80],"Decision":[81],"Trees":[82],"Boosting":[83],"Random":[85],"Under":[86],"Sampling":[87],"(RUS)":[88],"respectively":[91,145],"improve":[92],"solve":[97],"class":[99],"imbalance":[100],"problem.":[101],"This":[102],"method,":[103],"named":[104],"RUSBoost,":[105],"has":[106],"validated":[108],"using":[109],"data":[110],"leads,":[113],"collected":[114],"from":[115],"real":[117],"[1],":[120],"obtained":[123],"results":[124,153],"higher":[127],"balance":[128],"between":[129],"true":[130],"positives":[133],"all":[135],"leads.":[138],"Obtained":[139],"average":[140],"sensitivity":[141],"specificity":[143],"86%":[146],"94.85%,":[148],"which":[149],"outperform":[150],"other":[155],"works.":[157]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2550291951","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":7},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":2}],"updated_date":"2025-03-21T05:38:15.170142","created_date":"2016-11-30"}