{"id":"https://openalex.org/W1994385686","doi":"https://doi.org/10.1109/healthcom.2013.6720671","title":"Multi-distance motion vector clustering algorithm for video-based sleep analysis","display_name":"Multi-distance motion vector clustering algorithm for video-based sleep analysis","publication_year":2013,"publication_date":"2013-10-01","ids":{"openalex":"https://openalex.org/W1994385686","doi":"https://doi.org/10.1109/healthcom.2013.6720671","mag":"1994385686"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/healthcom.2013.6720671","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009154089","display_name":"Adrienne Heinrich","orcid":"https://orcid.org/0009-0007-3452-3204"},"institutions":[{"id":"https://openalex.org/I1329325741","display_name":"Philips (Finland)","ror":"https://ror.org/01g4jev56","country_code":"FI","type":"company","lineage":["https://openalex.org/I1329325741","https://openalex.org/I4210122849"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Adrienne Heinrich","raw_affiliation_strings":["Philips' Research Laboratories, Eindhoven-Netherlands"],"affiliations":[{"raw_affiliation_string":"Philips' Research Laboratories, Eindhoven-Netherlands","institution_ids":["https://openalex.org/I1329325741"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010524733","display_name":"Xin Zhao","orcid":"https://orcid.org/0000-0002-3604-1643"},"institutions":[{"id":"https://openalex.org/I83019370","display_name":"Eindhoven University of Technology","ror":"https://ror.org/02c2kyt77","country_code":"NL","type":"education","lineage":["https://openalex.org/I83019370"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"None Xin Zhao","raw_affiliation_strings":["Tech. Univ. Eindhoven, Eindhoven, Netherlands"],"affiliations":[{"raw_affiliation_string":"Tech. Univ. Eindhoven, Eindhoven, Netherlands","institution_ids":["https://openalex.org/I83019370"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5110165780","display_name":"Gerard de Haan","orcid":null},"institutions":[{"id":"https://openalex.org/I1329325741","display_name":"Philips (Finland)","ror":"https://ror.org/01g4jev56","country_code":"FI","type":"company","lineage":["https://openalex.org/I1329325741","https://openalex.org/I4210122849"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Gerard de Haan","raw_affiliation_strings":["Philips' Research Laboratories, Eindhoven-Netherlands"],"affiliations":[{"raw_affiliation_string":"Philips' Research Laboratories, Eindhoven-Netherlands","institution_ids":["https://openalex.org/I1329325741"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.343485,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":76},"biblio":{"volume":"26","issue":null,"first_page":"223","last_page":"227"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.581696},{"id":"https://openalex.org/keywords/motion-analysis","display_name":"Motion analysis","score":0.4606784},{"id":"https://openalex.org/keywords/sleep","display_name":"Sleep","score":0.4469838}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.85118884},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71998215},{"id":"https://openalex.org/C2778996325","wikidata":"https://www.wikidata.org/wiki/Q422201","display_name":"Actigraphy","level":3,"score":0.59780854},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5896137},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.581696},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4828792},{"id":"https://openalex.org/C2777036941","wikidata":"https://www.wikidata.org/wiki/Q6917771","display_name":"Motion analysis","level":2,"score":0.4606784},{"id":"https://openalex.org/C2775841894","wikidata":"https://www.wikidata.org/wiki/Q4683692","display_name":"Sleep (system call)","level":2,"score":0.4469838},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.42975092},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.42476732},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3784416},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3250266},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.08656347},{"id":"https://openalex.org/C121446783","wikidata":"https://www.wikidata.org/wiki/Q208353","display_name":"Circadian rhythm","level":2,"score":0.0},{"id":"https://openalex.org/C134018914","wikidata":"https://www.wikidata.org/wiki/Q162606","display_name":"Endocrinology","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/healthcom.2013.6720671","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.64}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1277966809","https://openalex.org/W1501500081","https://openalex.org/W1529871791","https://openalex.org/W1977377710","https://openalex.org/W202036063","https://openalex.org/W2073459066","https://openalex.org/W2108931344","https://openalex.org/W2119462844","https://openalex.org/W2127218421","https://openalex.org/W2140405352","https://openalex.org/W2140553013","https://openalex.org/W2152462980"],"related_works":["https://openalex.org/W2377635007","https://openalex.org/W2144481990","https://openalex.org/W2108395053","https://openalex.org/W2104332279","https://openalex.org/W2055991023","https://openalex.org/W2046491844","https://openalex.org/W2021051938","https://openalex.org/W1978569796","https://openalex.org/W1969019224","https://openalex.org/W176798505"],"abstract_inverted_index":{"Overall":[0],"health":[1],"and":[2,148],"daily":[3],"functioning":[4],"deteriorate":[5],"with":[6,64,128],"poor":[7],"sleep.":[8],"To":[9],"improve":[10],"one's":[11],"sleep,":[12],"sleep":[13,20,32,55],"monitoring":[14,33],"can":[15,45,162],"help":[16],"identifying":[17],"causes":[18],"of":[19,131],"problems.":[21],"As":[22],"an":[23,59,88],"advantage":[24],"over":[25],"traditional":[26],"wrist":[27],"actigraphy":[28],"used":[29,81,164],"in":[30,111,165],"home":[31],"solutions,":[34],"video":[35],"contains":[36],"more":[37,53],"comprehensive":[38],"movement":[39],"information.":[40],"Particularly,":[41],"different":[42,101],"body":[43,109],"movements":[44,110],"be":[46,163],"distinguished":[47],"which":[48],"is":[49],"beneficial":[50],"for":[51,82,94],"a":[52,65],"detailed":[54],"analysis.":[56],"We":[57,86,115],"developed":[58],"efficient":[60],"K-Means":[61],"clustering":[62,130,138,151],"method":[63,93,161],"multi-distance":[66,77],"seeding":[67],"technique":[68],"to":[69,98,118],"find":[70],"the":[71,83,95,112,144,149,158,166],"dominant":[72],"cluster":[73],"candidates.":[74],"An":[75],"integrated":[76],"dissimilarity":[78,96,121],"measure":[79,97],"was":[80],"subsequent":[84],"clustering.":[85],"present":[87],"automatic":[89],"content-dependent":[90],"weight":[91],"tuning":[92],"balance":[99],"between":[100],"distance":[102],"descriptors.":[103],"This":[104,153],"discriminative":[105],"algorithm":[106],"partitions":[107],"similar":[108],"same":[113],"cluster.":[114],"were":[116,140],"able":[117],"produce":[119],"several":[120],"measures":[122],"producing":[123],"clusters":[124],"that":[125,157],"agreed":[126],"67%":[127],"manual":[129],"motion":[132],"vectors":[133],"by":[134,142],"one":[135],"expert.":[136],"Similar":[137],"characteristics":[139],"preferred":[141],"both":[143],"five":[145],"expert":[146],"annotators":[147],"suggested":[150],"algorithm.":[152],"gives":[154],"us":[155],"confidence":[156],"proposed":[159],"optimization":[160],"future.":[167]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1994385686","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2017,"cited_by_count":1}],"updated_date":"2024-12-14T05:43:13.792294","created_date":"2016-06-24"}