{"id":"https://openalex.org/W2783086777","doi":"https://doi.org/10.1109/glocom.2017.8253930","title":"Reducing Recovery Error in Compressive Sensing with Limited Number of Base Stations","display_name":"Reducing Recovery Error in Compressive Sensing with Limited Number of Base Stations","publication_year":2017,"publication_date":"2017-12-01","ids":{"openalex":"https://openalex.org/W2783086777","doi":"https://doi.org/10.1109/glocom.2017.8253930","mag":"2783086777"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/glocom.2017.8253930","pdf_url":null,"source":{"id":"https://openalex.org/S4363607705","display_name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053410497","display_name":"Prompong Pakawanwong","orcid":null},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"funder","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Prompong Pakawanwong","raw_affiliation_strings":["The University of Tokyo, Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"The University of Tokyo, Tokyo, Japan","institution_ids":["https://openalex.org/I74801974"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038811120","display_name":"Vorapong Suppakitpaisarn","orcid":"https://orcid.org/0000-0002-7020-395X"},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"funder","lineage":["https://openalex.org/I74801974"]},{"id":"https://openalex.org/I184597095","display_name":"National Institute of Informatics","ror":"https://ror.org/04ksd4g47","country_code":"JP","type":"funder","lineage":["https://openalex.org/I1319490839","https://openalex.org/I184597095","https://openalex.org/I4210158934"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Vorapong Suppakitpaisarn","raw_affiliation_strings":["ERATO Kawarabayashi Large Graph Project, JST","National Institute of Informatics, Tokyo, Japan","The University of Tokyo, Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"ERATO Kawarabayashi Large Graph Project, JST","institution_ids":[]},{"raw_affiliation_string":"The University of Tokyo, Tokyo, Japan","institution_ids":["https://openalex.org/I74801974"]},{"raw_affiliation_string":"National Institute of Informatics, Tokyo, Japan","institution_ids":["https://openalex.org/I184597095"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087197748","display_name":"Liwen Xu","orcid":"https://orcid.org/0000-0003-2133-8257"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]},{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"funder","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["CN","US"],"is_corresponding":false,"raw_author_name":"Liwen Xu","raw_affiliation_strings":["Google, Mountain View, California, USA","Tsinghua University, Beijing, P. R. China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, P. R. China","institution_ids":["https://openalex.org/I99065089"]},{"raw_affiliation_string":"Google, Mountain View, California, USA","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5047111221","display_name":"Naonori Kakimura","orcid":"https://orcid.org/0000-0002-3918-3479"},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"funder","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Naonori Kakimura","raw_affiliation_strings":["ERATO Kawarabayashi Large Graph Project, JST","The University of Tokyo, Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"ERATO Kawarabayashi Large Graph Project, JST","institution_ids":[]},{"raw_affiliation_string":"The University of Tokyo, Tokyo, Japan","institution_ids":["https://openalex.org/I74801974"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":63},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12879","display_name":"Distributed Sensor Networks and Detection Algorithms","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/base","display_name":"Base (topology)","score":0.64415866}],"concepts":[{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.8406372},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66116565},{"id":"https://openalex.org/C68649174","wikidata":"https://www.wikidata.org/wiki/Q1379116","display_name":"Base station","level":2,"score":0.647492},{"id":"https://openalex.org/C42058472","wikidata":"https://www.wikidata.org/wiki/Q810214","display_name":"Base (topology)","level":2,"score":0.64415866},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.54263586},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.4595408},{"id":"https://openalex.org/C122383733","wikidata":"https://www.wikidata.org/wiki/Q865920","display_name":"Approximation error","level":2,"score":0.45751446},{"id":"https://openalex.org/C129844170","wikidata":"https://www.wikidata.org/wiki/Q41299","display_name":"Quadratic equation","level":2,"score":0.44750485},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.41558337},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20104301},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.14850125},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/glocom.2017.8253930","pdf_url":null,"source":{"id":"https://openalex.org/S4363607705","display_name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1977703196","https://openalex.org/W1999174140","https://openalex.org/W2029922561","https://openalex.org/W2092431085","https://openalex.org/W2119667497","https://openalex.org/W2123140882","https://openalex.org/W2135536356","https://openalex.org/W2159772324","https://openalex.org/W2164452299","https://openalex.org/W2167140162","https://openalex.org/W2289917018"],"related_works":["https://openalex.org/W4300044672","https://openalex.org/W2810730439","https://openalex.org/W2465351041","https://openalex.org/W2379589510","https://openalex.org/W2378166785","https://openalex.org/W2358292267","https://openalex.org/W2158224665","https://openalex.org/W2157715872","https://openalex.org/W1964277756","https://openalex.org/W1881631164"],"abstract_inverted_index":{"We":[0],"aim":[1],"to":[2,19,86,117],"decrease":[3],"a":[4,8,14,29,60,76,112,130],"communication":[5],"cost":[6],"of":[7,23,32,36,62,91],"network":[9],"that":[10,16,78,115,136],"uses":[11],"compressive":[12,92,108],"sensing,":[13,109],"technique":[15],"allows":[17],"us":[18],"recover":[20],"global":[21],"information":[22,40],"sparse":[24],"data":[25],"by":[26,100,129,147,156],"using":[27,148],"only":[28],"small":[30],"set":[31],"samples.":[33],"Despite":[34],"efficiency":[35],"the":[37,48,56,69,81,88,119,122,127,137,149,151],"technique,":[38],"collecting":[39],"from":[41,50],"all":[42],"samples":[43,49],"is":[44,105,140,154],"usually":[45,53],"costly.":[46],"Because":[47],"previous":[51],"works":[52],"spread":[54],"around":[55],"network,":[57],"setting":[58],"up":[59],"number":[61],"base":[63,82],"stations":[64],"does":[65],"not":[66],"help":[67],"reducing":[68],"cost.":[70],"In":[71],"this":[72],"paper,":[73],"we":[74,110,125],"propose":[75],"method":[77],"can":[79],"utilize":[80],"stations,":[83],"while":[84],"aiming":[85],"minimize":[87],"recovery":[89],"error":[90,153],"sensing.":[93],"Based":[94],"on":[95],"Theorem":[96],"1":[97],"in":[98,121],"[1]":[99],"Xu":[101],"et":[102],"al.,":[103],"which":[104],"for":[106],"cost-aware":[107],"derive":[111],"mathematical":[113],"program":[114,128,133],"aims":[116],"maximize":[118],"preciseness":[120],"setting.":[123],"Then,":[124],"approximate":[126],"convex":[131],"quadratic":[132],"and":[134],"prove":[135],"approximation":[138],"ratio":[139],"0.63.":[141],"Our":[142],"simulation":[143],"results":[144],"show":[145],"that,":[146],"coverage,":[150],"sampling":[152],"decreased":[155],"at":[157],"most":[158],"thirty":[159],"times.":[160]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2783086777","counts_by_year":[],"updated_date":"2025-01-26T17:00:51.620636","created_date":"2018-01-26"}