{"id":"https://openalex.org/W3129493926","doi":"https://doi.org/10.1109/globecom42002.2020.9348104","title":"Latency Prediction for Delay-sensitive V2X Applications in Mobile Cloud/Edge Computing Systems","display_name":"Latency Prediction for Delay-sensitive V2X Applications in Mobile Cloud/Edge Computing Systems","publication_year":2020,"publication_date":"2020-12-01","ids":{"openalex":"https://openalex.org/W3129493926","doi":"https://doi.org/10.1109/globecom42002.2020.9348104","mag":"3129493926"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/globecom42002.2020.9348104","pdf_url":null,"source":{"id":"https://openalex.org/S4363607705","display_name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101992900","display_name":"Wenhan Zhang","orcid":"https://orcid.org/0000-0001-5999-9283"},"institutions":[{"id":"https://openalex.org/I138006243","display_name":"University of Arizona","ror":"https://ror.org/03m2x1q45","country_code":"US","type":"education","lineage":["https://openalex.org/I138006243"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wenhan Zhang","raw_affiliation_strings":["Dept. Electrical & Computer Engineering, University of Arizona, Tucson, AZ"],"affiliations":[{"raw_affiliation_string":"Dept. Electrical & Computer Engineering, University of Arizona, Tucson, AZ","institution_ids":["https://openalex.org/I138006243"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071873766","display_name":"Mingjie Feng","orcid":"https://orcid.org/0000-0003-4771-7087"},"institutions":[{"id":"https://openalex.org/I138006243","display_name":"University of Arizona","ror":"https://ror.org/03m2x1q45","country_code":"US","type":"education","lineage":["https://openalex.org/I138006243"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mingjie Feng","raw_affiliation_strings":["Dept. Electrical & Computer Engineering, University of Arizona, Tucson, AZ"],"affiliations":[{"raw_affiliation_string":"Dept. Electrical & Computer Engineering, University of Arizona, Tucson, AZ","institution_ids":["https://openalex.org/I138006243"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081934496","display_name":"Marwan Krunz","orcid":"https://orcid.org/0000-0001-7137-2985"},"institutions":[{"id":"https://openalex.org/I138006243","display_name":"University of Arizona","ror":"https://ror.org/03m2x1q45","country_code":"US","type":"education","lineage":["https://openalex.org/I138006243"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Marwan Krunz","raw_affiliation_strings":["Dept. Electrical & Computer Engineering, University of Arizona, Tucson, AZ"],"affiliations":[{"raw_affiliation_string":"Dept. Electrical & Computer Engineering, University of Arizona, Tucson, AZ","institution_ids":["https://openalex.org/I138006243"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037131742","display_name":"Haris Volos","orcid":"https://orcid.org/0000-0002-3777-0012"},"institutions":[{"id":"https://openalex.org/I67530263","display_name":"Denso (United States)","ror":"https://ror.org/02w314k38","country_code":"US","type":"company","lineage":["https://openalex.org/I4210132650","https://openalex.org/I67530263"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Haris Volos","raw_affiliation_strings":["Silicon Valley Innovation Center, DENSO International America, Inc., San Jose, CA"],"affiliations":[{"raw_affiliation_string":"Silicon Valley Innovation Center, DENSO International America, Inc., San Jose, CA","institution_ids":["https://openalex.org/I67530263"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.606,"has_fulltext":false,"cited_by_count":15,"citation_normalized_percentile":{"value":0.827077,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10273","display_name":"IoT and Edge/Fog Computing","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10273","display_name":"IoT and Edge/Fog Computing","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13553","display_name":"Age of Information Optimization","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9865,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mobile-edge-computing","display_name":"Mobile Edge Computing","score":0.49476236},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.4540745},{"id":"https://openalex.org/keywords/component","display_name":"Component (thermodynamics)","score":0.41238385}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8465512},{"id":"https://openalex.org/C82876162","wikidata":"https://www.wikidata.org/wiki/Q17096504","display_name":"Latency (audio)","level":2,"score":0.7559058},{"id":"https://openalex.org/C79974875","wikidata":"https://www.wikidata.org/wiki/Q483639","display_name":"Cloud computing","level":2,"score":0.61271393},{"id":"https://openalex.org/C2778456923","wikidata":"https://www.wikidata.org/wiki/Q5337692","display_name":"Edge computing","level":3,"score":0.5009525},{"id":"https://openalex.org/C2776061582","wikidata":"https://www.wikidata.org/wiki/Q25325231","display_name":"Mobile edge computing","level":3,"score":0.49476236},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.4540745},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.43269816},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.42250022},{"id":"https://openalex.org/C168167062","wikidata":"https://www.wikidata.org/wiki/Q1117970","display_name":"Component (thermodynamics)","level":2,"score":0.41238385},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2938145},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.08629659},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/globecom42002.2020.9348104","pdf_url":null,"source":{"id":"https://openalex.org/S4363607705","display_name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CNS-1910348,CNS-1813401"}],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W2212589165","https://openalex.org/W2733304588","https://openalex.org/W2897053701","https://openalex.org/W2898326364","https://openalex.org/W2921018545","https://openalex.org/W2938496786","https://openalex.org/W2952114569","https://openalex.org/W2963334314","https://openalex.org/W2971990773","https://openalex.org/W3100987608"],"related_works":["https://openalex.org/W4361251304","https://openalex.org/W4324372666","https://openalex.org/W4225706866","https://openalex.org/W4221092438","https://openalex.org/W4210813012","https://openalex.org/W3174690704","https://openalex.org/W3048663290","https://openalex.org/W3024547383","https://openalex.org/W3023564924","https://openalex.org/W2914646191"],"abstract_inverted_index":{"Mobile":[0],"edge":[1],"computing":[2],"(MEC)":[3],"is":[4],"a":[5,17,31,64,80,112,122,126,150],"key":[6],"enabler":[7],"of":[8,22,107,128,149,154],"delay-sensitive":[9],"vehicle-to-everything":[10],"(V2X)":[11],"applications.":[12],"Determining":[13],"where":[14],"to":[15,86,147],"execute":[16],"task":[18],"necessitates":[19],"accurate":[20],"estimation":[21],"the":[23,53,70,88,95,104,117,139,144,155],"offloading":[24],"latency.":[25],"In":[26],"this":[27,108],"paper,":[28],"we":[29,50,120],"propose":[30,121],"latency":[32,45,98],"prediction":[33,105,141,145],"framework":[34],"that":[35,62,72,138],"integrates":[36],"machine":[37],"learning":[38],"and":[39,55,69,131],"statistical":[40,123],"approaches.":[41],"Aided":[42],"by":[43,110],"extensive":[44],"measurements":[46],"collected":[47],"during":[48],"driving,":[49],"first":[51,89],"preprocess":[52],"data":[54],"divide":[56],"it":[57],"into":[58],"two":[59],"components:":[60],"one":[61],"follows":[63],"trackable":[65],"trend":[66,96],"over":[67,99],"time":[68],"other":[71],"behaves":[73],"like":[74],"random":[75],"noise.":[76],"We":[77,101],"then":[78],"develop":[79],"Long":[81],"Short-Term":[82],"Memory":[83],"(LSTM)":[84],"network":[85,93],"predict":[87],"component.":[90],"This":[91],"LSTM":[92],"captures":[94],"in":[97],"time.":[100],"further":[102],"enhance":[103],"accuracy":[106],"technique":[109],"employing":[111],"k-medoids":[113],"classification":[114],"method.":[115],"For":[116],"second":[118],"component,":[119],"approach":[124,142],"using":[125],"combination":[127],"Epanechnikov":[129],"Kernel":[130],"moving":[132],"average":[133],"functions.":[134],"Experimental":[135],"results":[136],"show":[137],"proposed":[140],"reduces":[143],"error":[146],"half":[148],"standard":[151],"deviation":[152],"(STD)":[153],"raw":[156],"data.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3129493926","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":10},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":2}],"updated_date":"2024-12-19T22:11:50.176765","created_date":"2021-03-01"}