{"id":"https://openalex.org/W4388720166","doi":"https://doi.org/10.1109/gcce59613.2023.10315616","title":"A Traffic Flow Prediction Method Using Road Network Data","display_name":"A Traffic Flow Prediction Method Using Road Network Data","publication_year":2023,"publication_date":"2023-10-10","ids":{"openalex":"https://openalex.org/W4388720166","doi":"https://doi.org/10.1109/gcce59613.2023.10315616"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/gcce59613.2023.10315616","pdf_url":null,"source":{"id":"https://openalex.org/S4363607800","display_name":"2022 IEEE 11th Global Conference on Consumer Electronics (GCCE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5030070919","display_name":"Haruka Tanaka","orcid":"https://orcid.org/0000-0002-3295-6555"},"institutions":[{"id":"https://openalex.org/I4210088637","display_name":"Soka University","ror":"https://ror.org/003qdfg20","country_code":"JP","type":"education","lineage":["https://openalex.org/I4210088637"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Haruka Tanaka","raw_affiliation_strings":["Graduate School of Science and Engineering, Soka University, Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Science and Engineering, Soka University, Tokyo, Japan","institution_ids":["https://openalex.org/I4210088637"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5069442354","display_name":"Daisuke Kasamatsu","orcid":null},"institutions":[{"id":"https://openalex.org/I4210088637","display_name":"Soka University","ror":"https://ror.org/003qdfg20","country_code":"JP","type":"education","lineage":["https://openalex.org/I4210088637"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Daisuke Kasamatsu","raw_affiliation_strings":["Graduate School of Science and Engineering, Soka University, Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Science and Engineering, Soka University, Tokyo, Japan","institution_ids":["https://openalex.org/I4210088637"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"1192","last_page":"1193"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10524","display_name":"Traffic control and management","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/subnet","display_name":"Subnet","score":0.98770094}],"concepts":[{"id":"https://openalex.org/C21099817","wikidata":"https://www.wikidata.org/wiki/Q7631721","display_name":"Subnet","level":2,"score":0.98770094},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7767103},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5909463},{"id":"https://openalex.org/C207512268","wikidata":"https://www.wikidata.org/wiki/Q3074551","display_name":"Traffic flow (computer networking)","level":2,"score":0.5856923},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.5653271},{"id":"https://openalex.org/C2779227376","wikidata":"https://www.wikidata.org/wiki/Q6505497","display_name":"Layer (electronics)","level":2,"score":0.52801675},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.51511925},{"id":"https://openalex.org/C38349280","wikidata":"https://www.wikidata.org/wiki/Q1434290","display_name":"Flow (mathematics)","level":2,"score":0.450366},{"id":"https://openalex.org/C64093975","wikidata":"https://www.wikidata.org/wiki/Q356677","display_name":"Floating car data","level":3,"score":0.44660196},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38434854},{"id":"https://openalex.org/C2779888511","wikidata":"https://www.wikidata.org/wiki/Q244156","display_name":"Traffic congestion","level":2,"score":0.21288109},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.20996314},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.19381407},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.15142566},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12991983},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/gcce59613.2023.10315616","pdf_url":null,"source":{"id":"https://openalex.org/S4363607800","display_name":"2022 IEEE 11th Global Conference on Consumer Electronics (GCCE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.83,"id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":3,"referenced_works":["https://openalex.org/W2528639018","https://openalex.org/W3133689636","https://openalex.org/W3156972038"],"related_works":["https://openalex.org/W4389247673","https://openalex.org/W4220875044","https://openalex.org/W4206269847","https://openalex.org/W2913114592","https://openalex.org/W2787709356","https://openalex.org/W2386230773","https://openalex.org/W2322247726","https://openalex.org/W2074943018","https://openalex.org/W2047739511","https://openalex.org/W1977405947"],"abstract_inverted_index":{"Traffic":[0],"flow":[1,49,100],"prediction":[2,50,94,111],"is":[3,68,83,107],"one":[4],"of":[5,47,88],"the":[6,20,39,79,86,89,93,104],"major":[7],"tasks":[8],"in":[9,38,109],"urban":[10],"intelligence.":[11],"Various":[12],"deep":[13],"learning":[14],"models":[15],"have":[16],"been":[17],"proposed.":[18],"However,":[19],"main":[21],"interest":[22],"was":[23,36],"to":[24,91],"capture":[25],"spatial":[26],"and":[27,62,78],"temporal":[28],"features;":[29],"therefore,":[30],"less":[31],"data":[32,56,101],"on":[33],"external":[34],"factors":[35],"used":[37],"previous":[40],"literature.":[41],"This":[42],"paper":[43],"proposes":[44],"a":[45,69],"method":[46,106],"traffic":[48],"which":[51],"can":[52,73],"process":[53],"road":[54,75],"network":[55,76],"with":[57,98],"two":[58],"units:":[59],"GIS":[60,66],"subnet":[61,67,71],"mask":[63,80],"processing":[64,81],"layer.":[65],"CNN-based":[70],"that":[72,103],"learn":[74],"data,":[77],"layer":[82],"placed":[84],"at":[85],"bottom":[87],"model":[90],"fit":[92],"values.":[95],"Experimental":[96],"results":[97],"taxi":[99],"showed":[102],"proposed":[105],"effective":[108],"improving":[110],"accuracy.":[112]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388720166","counts_by_year":[],"updated_date":"2025-01-17T22:41:17.676642","created_date":"2023-11-17"}