{"id":"https://openalex.org/W2273937221","doi":"https://doi.org/10.1109/gcce.2015.7398506","title":"Semi-supervised learning based activity recognition from sensor data","display_name":"Semi-supervised learning based activity recognition from sensor data","publication_year":2015,"publication_date":"2015-10-01","ids":{"openalex":"https://openalex.org/W2273937221","doi":"https://doi.org/10.1109/gcce.2015.7398506","mag":"2273937221"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/gcce.2015.7398506","pdf_url":null,"source":{"id":"https://openalex.org/S4363607800","display_name":"2022 IEEE 11th Global Conference on Consumer Electronics (GCCE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062396087","display_name":"Ryunosuke Matsushige","orcid":null},"institutions":[{"id":"https://openalex.org/I206011266","display_name":"Kwansei Gakuin University","ror":"https://ror.org/02qf2tx24","country_code":"JP","type":"education","lineage":["https://openalex.org/I206011266"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Ryunosuke Matsushige","raw_affiliation_strings":["School of Science and Engineering, Kwansei Gakuin University"],"affiliations":[{"raw_affiliation_string":"School of Science and Engineering, Kwansei Gakuin University","institution_ids":["https://openalex.org/I206011266"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028631197","display_name":"Koh Kakusho","orcid":null},"institutions":[{"id":"https://openalex.org/I206011266","display_name":"Kwansei Gakuin University","ror":"https://ror.org/02qf2tx24","country_code":"JP","type":"education","lineage":["https://openalex.org/I206011266"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Koh Kakusho","raw_affiliation_strings":["School of Science and Engineering, Kwansei Gakuin University"],"affiliations":[{"raw_affiliation_string":"School of Science and Engineering, Kwansei Gakuin University","institution_ids":["https://openalex.org/I206011266"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5113946036","display_name":"Takeshi Okadome","orcid":null},"institutions":[{"id":"https://openalex.org/I206011266","display_name":"Kwansei Gakuin University","ror":"https://ror.org/02qf2tx24","country_code":"JP","type":"education","lineage":["https://openalex.org/I206011266"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takeshi Okadome","raw_affiliation_strings":["School of Science and Engineering, Kwansei Gakuin University"],"affiliations":[{"raw_affiliation_string":"School of Science and Engineering, Kwansei Gakuin University","institution_ids":["https://openalex.org/I206011266"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.419,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.706941,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"106","last_page":"107"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11667","display_name":"Advanced Chemical Sensor Technologies","score":0.99,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11667","display_name":"Advanced Chemical Sensor Technologies","score":0.99,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9858,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9824,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.7012014},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.520254},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.50889206},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.49365506},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.43970507}],"concepts":[{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.74254405},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.7012014},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6798493},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6622559},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63823324},{"id":"https://openalex.org/C58973888","wikidata":"https://www.wikidata.org/wiki/Q1041418","display_name":"Semi-supervised learning","level":2,"score":0.6017124},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.520254},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.50889206},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.49365506},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48656833},{"id":"https://openalex.org/C151956035","wikidata":"https://www.wikidata.org/wiki/Q1132755","display_name":"Logistic regression","level":2,"score":0.4687023},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.45423266},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.43970507},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.41460997},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.41284013},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2765795},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.10758561},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/gcce.2015.7398506","pdf_url":null,"source":{"id":"https://openalex.org/S4363607800","display_name":"2022 IEEE 11th Global Conference on Consumer Electronics (GCCE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W1990334093","https://openalex.org/W2049633694","https://openalex.org/W2097089247","https://openalex.org/W2105046342","https://openalex.org/W2107008379","https://openalex.org/W2145494108","https://openalex.org/W2293363371","https://openalex.org/W2468638384"],"related_works":["https://openalex.org/W4312414840","https://openalex.org/W4300902524","https://openalex.org/W4206276646","https://openalex.org/W34092691","https://openalex.org/W3004135598","https://openalex.org/W2943467239","https://openalex.org/W2794908468","https://openalex.org/W192740413","https://openalex.org/W1571801203","https://openalex.org/W101422005"],"abstract_inverted_index":{"The":[0],"semi-supervised":[1,110,114],"kernel":[2,24],"logistic":[3],"regression":[4],"(SSKLR),":[5],"developed":[6],"for":[7,59,74],"the":[8,17,30,36,50,53,57,106],"classification":[9],"of":[10,19,23,29,52,68,70,77,91],"human":[11,78],"behaviors":[12,79,107],"from":[13,35],"sensor":[14],"data,":[15],"takes":[16],"form":[18],"a":[20,66,89,95],"linear":[21],"combination":[22],"functions":[25],"associated":[26],"with":[27],"each":[28],"labeled":[31,71],"and":[32,84,86,93,113],"unlabeled":[33,61],"data":[34,62,101],"training":[37],"set.":[38],"Its":[39],"model":[40],"parameters":[41],"are":[42,64],"determined,":[43],"using":[44,99],"an":[45],"EM":[46],"algorithm,":[47],"by":[48],"maximizing":[49],"expectation":[51],"joint":[54],"distribution":[55],"over":[56],"posterior":[58],"selected":[60],"that":[63],"in":[65],"neighborhood":[67],"one":[69],"data.":[72],"Tests":[73],"two":[75],"types":[76],"such":[80],"as":[81,102],"(1)":[82],"\"walk,\"":[83],"\"skip,\"":[85],"(2)":[87],"\"drink":[88],"cup":[90],"tea,\"":[92],"\"wash":[94],"cup\"":[96],"reveal":[97],"that,":[98],"acceleration":[100],"input,":[103],"SSKLR":[104],"classifies":[105],"better":[108],"than":[109],"Gaussian":[111],"mixture":[112],"support":[115],"vector":[116],"machine":[117],"models.":[118]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2273937221","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":2},{"year":2016,"cited_by_count":1}],"updated_date":"2025-01-03T22:37:03.366183","created_date":"2016-06-24"}