{"id":"https://openalex.org/W4390874646","doi":"https://doi.org/10.1109/gcaiot61060.2023.10385107","title":"Human Action Recognition Using ConvBiLSTM-GRU In Indoor Environment","display_name":"Human Action Recognition Using ConvBiLSTM-GRU In Indoor Environment","publication_year":2023,"publication_date":"2023-12-10","ids":{"openalex":"https://openalex.org/W4390874646","doi":"https://doi.org/10.1109/gcaiot61060.2023.10385107"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/gcaiot61060.2023.10385107","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5071472303","display_name":"M.K. Sain","orcid":"https://orcid.org/0000-0003-0129-0874"},"institutions":[{"id":"https://openalex.org/I33552525","display_name":"LNM Institute of Information Technology","ror":"https://ror.org/03jp7rg16","country_code":"IN","type":"education","lineage":["https://openalex.org/I33552525"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Manoj Kumar Sain","raw_affiliation_strings":["Electronics and Communication Department, The LNM Institute of Information Technology, Jaipur, Rajasthan, India"],"affiliations":[{"raw_affiliation_string":"Electronics and Communication Department, The LNM Institute of Information Technology, Jaipur, Rajasthan, India","institution_ids":["https://openalex.org/I33552525"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024474143","display_name":"Joyeeta Singha","orcid":"https://orcid.org/0000-0001-9077-1842"},"institutions":[{"id":"https://openalex.org/I33552525","display_name":"LNM Institute of Information Technology","ror":"https://ror.org/03jp7rg16","country_code":"IN","type":"education","lineage":["https://openalex.org/I33552525"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Joyeeta Singha","raw_affiliation_strings":["Electronics and Communication Department, The LNM Institute of Information Technology, Jaipur, Rajasthan, India"],"affiliations":[{"raw_affiliation_string":"Electronics and Communication Department, The LNM Institute of Information Technology, Jaipur, Rajasthan, India","institution_ids":["https://openalex.org/I33552525"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082214145","display_name":"Sandeep Saini","orcid":"https://orcid.org/0000-0002-8906-8639"},"institutions":[{"id":"https://openalex.org/I33552525","display_name":"LNM Institute of Information Technology","ror":"https://ror.org/03jp7rg16","country_code":"IN","type":"education","lineage":["https://openalex.org/I33552525"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Sandeep Saini","raw_affiliation_strings":["Electronics and Communication Department, The LNM Institute of Information Technology, Jaipur, Rajasthan, India"],"affiliations":[{"raw_affiliation_string":"Electronics and Communication Department, The LNM Institute of Information Technology, Jaipur, Rajasthan, India","institution_ids":["https://openalex.org/I33552525"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5064062259","display_name":"Vijay Bhaskar Semwal","orcid":"https://orcid.org/0000-0003-0767-6057"},"institutions":[{"id":"https://openalex.org/I91277730","display_name":"Maulana Azad National Institute of Technology","ror":"https://ror.org/026vtd268","country_code":"IN","type":"education","lineage":["https://openalex.org/I91277730"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Vijay Bhaskar Semwal","raw_affiliation_strings":["Electronics and Communication Department, Maulana Azad National Institute of Technology, Bhopal, India"],"affiliations":[{"raw_affiliation_string":"Electronics and Communication Department, Maulana Azad National Institute of Technology, Bhopal, India","institution_ids":["https://openalex.org/I91277730"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.096,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.556134,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"179","last_page":"186"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.9914,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/action-recognition","display_name":"Action Recognition","score":0.57540464}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6657585},{"id":"https://openalex.org/C2780791683","wikidata":"https://www.wikidata.org/wiki/Q846785","display_name":"Action (physics)","level":2,"score":0.57931954},{"id":"https://openalex.org/C2987834672","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Action recognition","level":3,"score":0.57540464},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.33641773},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/gcaiot61060.2023.10385107","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W2140944144","https://openalex.org/W2264719059","https://openalex.org/W2604321021","https://openalex.org/W2618253408","https://openalex.org/W2736191430","https://openalex.org/W2736334449","https://openalex.org/W2774824934","https://openalex.org/W2802169192","https://openalex.org/W2891510587","https://openalex.org/W2897943474","https://openalex.org/W2936610935","https://openalex.org/W2952181509","https://openalex.org/W3011745586","https://openalex.org/W3135100418","https://openalex.org/W3200959363","https://openalex.org/W3202535612","https://openalex.org/W3204347661","https://openalex.org/W3210766530","https://openalex.org/W3216463631","https://openalex.org/W4205255130","https://openalex.org/W4206780588","https://openalex.org/W4210654500","https://openalex.org/W4280587517","https://openalex.org/W4281737392","https://openalex.org/W4283826404","https://openalex.org/W4285079306","https://openalex.org/W4285287367","https://openalex.org/W4327979832"],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2269464716","https://openalex.org/W1576128429"],"abstract_inverted_index":{"Human":[0],"Activity":[1],"Recognition":[2],"(HAR)":[3],"is":[4,179,191],"a":[5,25,45,50,56,61,113],"significant":[6],"challenge":[7],"in":[8,17],"research.":[9],"Traditional":[10],"pattern":[11],"recognition":[12],"methods":[13],"have":[14,66,167],"faced":[15],"limitations":[16],"terms":[18],"of":[19,87,108,147,157,161,170,181],"classification":[20],"efficiency.":[21],"In":[22],"this":[23],"paper,":[24],"novel":[26],"deep":[27],"learning":[28],"architecture,":[29],"Convolutional-Bidirectional":[30],"Long":[31,52],"Short-Term":[32,53],"Memory":[33,54],"and":[34,60,68,80,96,110,131,135,151,164,173],"Gated":[35,57],"Recurrent":[36,58],"Unit":[37],"(ConvBiLSTM-GRU)":[38],"has":[39],"been":[40],"proposed.":[41],"The":[42,83,98,153,187],"model":[43,121],"comprises":[44],"Convolutional":[46],"Neural":[47],"Network":[48],"(CNN),":[49],"Bidirectional":[51],"Unit,":[55,59],"fully":[62],"connected":[63],"layer.":[64],"We":[65],"created":[67],"compared":[69],"our":[70],"dataset":[71,85,189],"with":[72,144],"available":[73],"datasets,":[74],"i.e.,":[75],"NTU-RGBD,":[76],"UP-FALL,":[77],"UR-Fall,":[78],"WISDM,":[79],"UCI":[81],"HAR.":[82],"proposed":[84,154,188],"consists":[86],"seven":[88],"activities:":[89],"eating,":[90],"exercise,":[91],"handshake,":[92],"situps,":[93],"vomiting,":[94],"headache,":[95],"walking.":[97],"activities":[99],"were":[100],"collected":[101],"from":[102,139],"fifty-four":[103],"subjects":[104],"between":[105],"the":[106,127,140,145,194],"ages":[107],"25":[109],"40":[111],"using":[112,126],"Kinect":[114],"v2":[115],"sensor":[116],"at":[117],"30FPS.":[118],"TThe":[119],"suggested":[120],"builds":[122],"unique":[123],"guided":[124],"features":[125],"preprocessed":[128],"skeleton":[129],"coordinates":[130],"their":[132],"distinctive":[133],"geometrical":[134],"kinematic":[136],"aspects.":[137],"Results":[138],"experiment":[141],"are":[142],"contrasted":[143],"performance":[146],"standalone":[148],"CNNs,":[149],"LSTMs,":[150],"ConvLSTM.":[152],"model's":[155],"accuracy":[156,168],"99.5%":[158],"surpasses":[159],"that":[160],"CNN,":[162],"LSTM,":[163],"ConvLSTM,":[165],"which":[166],"rates":[169],"95.76%,":[171],"97%,":[172],"98.89%,":[174],"respectively.":[175],"Our":[176],"Proposed":[177],"technique":[178],"invariant":[180],"stance,":[182],"speed,":[183],"individual,":[184],"clothes,":[185],"etc.":[186],"sample":[190],"accessible":[192],"to":[193],"general":[195],"public.":[196]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390874646","counts_by_year":[{"year":2024,"cited_by_count":5}],"updated_date":"2024-12-30T21:09:19.348502","created_date":"2024-01-16"}