{"id":"https://openalex.org/W2979558262","doi":"https://doi.org/10.1109/fuzz-ieee.2019.8858982","title":"Hybrid Model of Interval Type-2 Neural Fuzzy Inference System and Mutual Subsethood with Applications","display_name":"Hybrid Model of Interval Type-2 Neural Fuzzy Inference System and Mutual Subsethood with Applications","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2979558262","doi":"https://doi.org/10.1109/fuzz-ieee.2019.8858982","mag":"2979558262"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/fuzz-ieee.2019.8858982","pdf_url":null,"source":{"id":"https://openalex.org/S4363608205","display_name":"2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009149528","display_name":"Vuppuluri Sumati","orcid":"https://orcid.org/0000-0002-0617-6168"},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Vuppuluri Sumati","raw_affiliation_strings":["Algoleap Technologies Pvt. Ltd., Hyderabad, India"],"affiliations":[{"raw_affiliation_string":"Algoleap Technologies Pvt. Ltd., Hyderabad, India","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072764860","display_name":"C. Patvardhan","orcid":null},"institutions":[{"id":"https://openalex.org/I178254495","display_name":"Dayalbagh Educational Institute","ror":"https://ror.org/04q4j2f69","country_code":"IN","type":"education","lineage":["https://openalex.org/I178254495"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"C. Patvardhan","raw_affiliation_strings":["Dept. of Electrical Engineering, Dayalbagh Educational Institute, Agra, India"],"affiliations":[{"raw_affiliation_string":"Dept. of Electrical Engineering, Dayalbagh Educational Institute, Agra, India","institution_ids":["https://openalex.org/I178254495"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100683999","display_name":"Sandeep Paul","orcid":"https://orcid.org/0000-0002-3743-5601"},"institutions":[{"id":"https://openalex.org/I178254495","display_name":"Dayalbagh Educational Institute","ror":"https://ror.org/04q4j2f69","country_code":"IN","type":"education","lineage":["https://openalex.org/I178254495"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Sandeep Paul","raw_affiliation_strings":["Dept. of Physics & Computer Science, Dayalbgh Educational Institute, Agra, India"],"affiliations":[{"raw_affiliation_string":"Dept. of Physics & Computer Science, Dayalbgh Educational Institute, Agra, India","institution_ids":["https://openalex.org/I178254495"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108535384","display_name":"Lotika Singh","orcid":null},"institutions":[{"id":"https://openalex.org/I178254495","display_name":"Dayalbagh Educational Institute","ror":"https://ror.org/04q4j2f69","country_code":"IN","type":"education","lineage":["https://openalex.org/I178254495"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Lotika Singh","raw_affiliation_strings":["Dept. of Physics & Computer Science, Dayalbgh Educational Institute, Agra, India"],"affiliations":[{"raw_affiliation_string":"Dept. of Physics & Computer Science, Dayalbgh Educational Institute, Agra, India","institution_ids":["https://openalex.org/I178254495"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5052926071","display_name":"Vipin Swarup","orcid":"https://orcid.org/0000-0002-7892-4743"},"institutions":[{"id":"https://openalex.org/I135428043","display_name":"Cisco Systems (United States)","ror":"https://ror.org/03yt1ez60","country_code":"US","type":"funder","lineage":["https://openalex.org/I135428043"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"V. Mehar Swarup","raw_affiliation_strings":["Cisco Systems, New York, USA"],"affiliations":[{"raw_affiliation_string":"Cisco Systems, New York, USA","institution_ids":["https://openalex.org/I135428043"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.132,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.503585,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10820","display_name":"Fuzzy Logic and Control Systems","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10820","display_name":"Fuzzy Logic and Control Systems","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13717","display_name":"Advanced Algorithms and Applications","score":0.9672,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C42011625","wikidata":"https://www.wikidata.org/wiki/Q1055058","display_name":"Fuzzy set","level":3,"score":0.53192747},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.51580477},{"id":"https://openalex.org/C2778067643","wikidata":"https://www.wikidata.org/wiki/Q166507","display_name":"Interval (graph theory)","level":2,"score":0.5020659},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.48259914},{"id":"https://openalex.org/C29470771","wikidata":"https://www.wikidata.org/wiki/Q4165150","display_name":"Neuro-fuzzy","level":4,"score":0.46715918},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46236804},{"id":"https://openalex.org/C195975749","wikidata":"https://www.wikidata.org/wiki/Q1475705","display_name":"Fuzzy control system","level":3,"score":0.44246334},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.43813244},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.4355083},{"id":"https://openalex.org/C5263885","wikidata":"https://www.wikidata.org/wiki/Q1967302","display_name":"Membership function","level":4,"score":0.4130972},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.17947355},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/fuzz-ieee.2019.8858982","pdf_url":null,"source":{"id":"https://openalex.org/S4363608205","display_name":"2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1881670176","https://openalex.org/W1999277376","https://openalex.org/W2032100896","https://openalex.org/W2043833885","https://openalex.org/W2043897597","https://openalex.org/W2054646265","https://openalex.org/W2059901265","https://openalex.org/W2063388653","https://openalex.org/W2085463545","https://openalex.org/W2094631910","https://openalex.org/W2095960106","https://openalex.org/W2096790506","https://openalex.org/W2101161011","https://openalex.org/W2103052116","https://openalex.org/W2105234323","https://openalex.org/W2128991376","https://openalex.org/W2132885717","https://openalex.org/W2135849563","https://openalex.org/W2141178894","https://openalex.org/W2147684166","https://openalex.org/W2152529194","https://openalex.org/W2156222099","https://openalex.org/W2156948680","https://openalex.org/W2157041604","https://openalex.org/W2159265133","https://openalex.org/W2162706466","https://openalex.org/W2165729498","https://openalex.org/W2166623127","https://openalex.org/W2169814901","https://openalex.org/W2342391674","https://openalex.org/W2566068678","https://openalex.org/W2610714770","https://openalex.org/W2791666189","https://openalex.org/W2799303643","https://openalex.org/W2913642042","https://openalex.org/W4237236578","https://openalex.org/W4245152641","https://openalex.org/W564030374","https://openalex.org/W928861065"],"related_works":["https://openalex.org/W87675884","https://openalex.org/W3207109968","https://openalex.org/W2384503959","https://openalex.org/W2336148757","https://openalex.org/W2320922716","https://openalex.org/W2181335288","https://openalex.org/W2133615482","https://openalex.org/W2132859092","https://openalex.org/W2013143463","https://openalex.org/W154406135"],"abstract_inverted_index":{"This":[0,45,135],"paper":[1],"presents":[2],"the":[3,31,48,89,104,186,190],"hybrid":[4,58,136,191],"network":[5,55,59,66],"of":[6,33,82,126,163,189],"Interval":[7,17],"Type-2":[8,18],"Subsethood":[9,20],"Neural":[10,21],"Fuzzy":[11,22],"Inference":[12,23],"System":[13,24],"(IT2SuNFIS)":[14],"[1]":[15],"and":[16,27,41,68,97,146,168,175,179],"Mutual":[19],"(IT2MSFuNIS)":[25],"[2]":[26,52],"it's":[28],"applications":[29],"in":[30,53,63,180],"area":[32],"Mackey-Glass":[34],"time-series":[35],"(MGTS)":[36],"prediction,":[37],"chemical":[38,166],"plant":[39,167],"control":[40],"Hang":[42,169],"function":[43,115],"approximation.":[44],"model":[46],"introduces":[47],"mutual":[49,78],"subsethood":[50,79,83],"measure":[51,80,84],"IT2SuNFIS":[54,73,183],"[1].":[56],"Resulting":[57],"differs":[60],"from":[61,72],"IT2MSFuNIS":[62],"its":[64],"consequent":[65],"structure":[67],"it":[69,76],"is":[70,130],"different":[71,121,141],"as":[74],"well;":[75],"uses":[77],"instead":[81],"for":[85],"determining":[86],"correlation":[87],"between":[88],"interval":[90],"type-2":[91,127,176],"fuzzy":[92],"set":[93],"(IT2":[94],"FS)":[95],"inputs":[96,102],"IT2":[98,109],"FS":[99],"antecedents.":[100],"The":[101,123],"to":[103],"system":[105,138],"are":[106,157],"fuzzified":[107],"using":[108,132,140],"FSs":[110],"with":[111,172,182],"Gaussian":[112],"primary":[113],"membership":[114],"(GPMF)":[116],"having":[117],"identical":[118],"mean":[119],"but":[120],"variance.":[122],"signal":[124],"aggregation":[125],"based":[128],"activation":[129],"performed":[131],"product":[133],"operator.":[134],"neuro-fuzzy":[137,177],"learns":[139],"differential":[142,150],"evolution":[143,151],"(DE)":[144],"strategies":[145],"Artificial":[147],"Bee":[148],"colony":[149],"(ABC-DE)":[152],"framework":[153],"[3].":[154],"Empirical":[155],"studies":[156],"conducted":[158],"on":[159],"benchmark":[160],"data":[161],"sets":[162],"MGTS,":[164],"a":[165],"function.":[170],"Comparisons":[171],"other":[173],"type-1":[174],"models":[178],"particular":[181],"[1],":[184],"verify":[185],"excellent":[187],"performance":[188],"network.":[192]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2979558262","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2025-04-15T21:53:59.282441","created_date":"2019-10-18"}