{"id":"https://openalex.org/W2898804478","doi":"https://doi.org/10.1109/fit.2018.00064","title":"Security for Machine Learning-Based Systems: Attacks and Challenges During Training and Inference","display_name":"Security for Machine Learning-Based Systems: Attacks and Challenges During Training and Inference","publication_year":2018,"publication_date":"2018-12-01","ids":{"openalex":"https://openalex.org/W2898804478","doi":"https://doi.org/10.1109/fit.2018.00064","mag":"2898804478"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/fit.2018.00064","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1811.01463","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5074265316","display_name":"Faiq Khalid","orcid":"https://orcid.org/0000-0001-6263-674X"},"institutions":[{"id":"https://openalex.org/I145847075","display_name":"TU Wien","ror":"https://ror.org/04d836q62","country_code":"AT","type":"funder","lineage":["https://openalex.org/I145847075"]}],"countries":["AT"],"is_corresponding":false,"raw_author_name":"Faiq Khalid","raw_affiliation_strings":["Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria"],"affiliations":[{"raw_affiliation_string":"Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria","institution_ids":["https://openalex.org/I145847075"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100647460","display_name":"Muhammad Abdullah Hanif","orcid":"https://orcid.org/0000-0001-9841-6132"},"institutions":[{"id":"https://openalex.org/I145847075","display_name":"TU Wien","ror":"https://ror.org/04d836q62","country_code":"AT","type":"funder","lineage":["https://openalex.org/I145847075"]}],"countries":["AT"],"is_corresponding":false,"raw_author_name":"Muhammad Abdullah Hanif","raw_affiliation_strings":["Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria"],"affiliations":[{"raw_affiliation_string":"Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria","institution_ids":["https://openalex.org/I145847075"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058712739","display_name":"Semeen Rehman","orcid":"https://orcid.org/0000-0002-8972-0949"},"institutions":[{"id":"https://openalex.org/I145847075","display_name":"TU Wien","ror":"https://ror.org/04d836q62","country_code":"AT","type":"funder","lineage":["https://openalex.org/I145847075"]}],"countries":["AT"],"is_corresponding":false,"raw_author_name":"Semeen Rehman","raw_affiliation_strings":["Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria"],"affiliations":[{"raw_affiliation_string":"Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria","institution_ids":["https://openalex.org/I145847075"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005190949","display_name":"Muhammad Shafique","orcid":"https://orcid.org/0000-0002-2607-8135"},"institutions":[{"id":"https://openalex.org/I145847075","display_name":"TU Wien","ror":"https://ror.org/04d836q62","country_code":"AT","type":"funder","lineage":["https://openalex.org/I145847075"]}],"countries":["AT"],"is_corresponding":false,"raw_author_name":"Muhammad Shafique","raw_affiliation_strings":["Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria"],"affiliations":[{"raw_affiliation_string":"Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria","institution_ids":["https://openalex.org/I145847075"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":21,"citation_normalized_percentile":{"value":0.95255,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"327","last_page":"332"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11241","display_name":"Advanced Malware Detection Techniques","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.655893},{"id":"https://openalex.org/keywords/traffic-sign-recognition","display_name":"Traffic Sign Recognition","score":0.5421814}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8197849},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6612428},{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.655893},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.5717222},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.56110656},{"id":"https://openalex.org/C6528762","wikidata":"https://www.wikidata.org/wiki/Q1574298","display_name":"Traffic sign recognition","level":4,"score":0.5421814},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.44944572},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.44829276},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4478699},{"id":"https://openalex.org/C121822524","wikidata":"https://www.wikidata.org/wiki/Q5157582","display_name":"Computer security model","level":2,"score":0.43546987},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40374938},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.29953825},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.23347434},{"id":"https://openalex.org/C139676723","wikidata":"https://www.wikidata.org/wiki/Q1193832","display_name":"Sign (mathematics)","level":2,"score":0.11456853},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C2983860417","wikidata":"https://www.wikidata.org/wiki/Q170285","display_name":"Traffic sign","level":3,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/fit.2018.00064","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1811.01463","pdf_url":"https://arxiv.org/pdf/1811.01463","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.1811.01463","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1811.01463","pdf_url":"https://arxiv.org/pdf/1811.01463","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.48,"id":"https://metadata.un.org/sdg/17","display_name":"Partnerships for the goals"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W2898804478","https://openalex.org/W3099439092"],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1673923490","https://openalex.org/W2095577883","https://openalex.org/W2108598243","https://openalex.org/W2117876524","https://openalex.org/W2180612164","https://openalex.org/W2194775991","https://openalex.org/W2216949779","https://openalex.org/W2295307183","https://openalex.org/W2317495605","https://openalex.org/W2435473771","https://openalex.org/W2516574342","https://openalex.org/W2528914598","https://openalex.org/W2535873859","https://openalex.org/W2543296129","https://openalex.org/W2590523583","https://openalex.org/W2594877703","https://openalex.org/W2603766943","https://openalex.org/W2681571577","https://openalex.org/W2701059868","https://openalex.org/W2726092462","https://openalex.org/W2745368302","https://openalex.org/W2747122248","https://openalex.org/W2748789698","https://openalex.org/W2761709036","https://openalex.org/W2766677542","https://openalex.org/W2768347741","https://openalex.org/W2783357829","https://openalex.org/W2791688291","https://openalex.org/W2792587241","https://openalex.org/W2807096445","https://openalex.org/W2886576643","https://openalex.org/W2888851639","https://openalex.org/W2898009658","https://openalex.org/W2963378725","https://openalex.org/W2963689459","https://openalex.org/W2963857521","https://openalex.org/W2964153729","https://openalex.org/W2964345203","https://openalex.org/W4297573953","https://openalex.org/W4302294892","https://openalex.org/W4323287825","https://openalex.org/W4393798327"],"related_works":["https://openalex.org/W4389249638","https://openalex.org/W4386603768","https://openalex.org/W4380078352","https://openalex.org/W4283319738","https://openalex.org/W3046591097","https://openalex.org/W2950475743","https://openalex.org/W2886711096","https://openalex.org/W2750384547","https://openalex.org/W2734358244","https://openalex.org/W2733410219"],"abstract_inverted_index":{"The":[0],"exponential":[1],"increase":[2],"in":[3,88,169],"dependencies":[4],"between":[5],"the":[6,44,53,65,106,141,157,161,165,179],"cyber":[7],"and":[8,23,41,95,114,127,131,173],"physical":[9],"world":[10],"leads":[11],"to":[12,39,99,182],"an":[13,149],"enormous":[14,45],"amount":[15,46],"of":[16,36,47,57,84,109,144,178],"data":[17],"which":[18,67],"must":[19],"be":[20,69],"efficiently":[21,40],"processed":[22],"stored.":[24],"Therefore,":[25,76],"computing":[26,55],"paradigms":[27],"are":[28],"evolving":[29],"towards":[30],"machine":[31,89],"learning":[32],"(ML)-based":[33],"systems":[34],"because":[35],"their":[37,91],"ability":[38],"accurately":[42],"process":[43],"data.":[48],"Although":[49],"ML-based":[50],"solutions":[51],"address":[52],"efficient":[54],"requirements":[56],"big":[58],"data,":[59],"they":[60],"introduce":[61],"security":[62,74,86,102,107,121,142,171,185],"vulnerabilities":[63,108],"into":[64],"systems,":[66],"cannot":[68],"addressed":[70],"by":[71],"traditional":[72],"monitoring-based":[73],"measures.":[75,103],"this":[77],"paper":[78],"first":[79],"presents":[80],"a":[81,175],"brief":[82,176],"overview":[83,177],"various":[85],"threats":[87,122],"learning,":[90],"respective":[92],"threat":[93],"models":[94],"associated":[96,166],"research":[97,167],"challenges":[98,168],"develop":[100],"robust":[101],"To":[104],"illustrate":[105],"ML":[110,124],"during":[111],"training,":[112],"inferencing":[113],"hardware":[115],"implementation,":[116],"we":[117,146,163],"demonstrate":[118],"some":[119],"key":[120],"on":[123,140,156],"using":[125],"LeNet":[126],"VGGNet":[128],"for":[129],"MNIST":[130],"German":[132],"Traffic":[133],"Sign":[134],"Recognition":[135],"Benchmarks":[136],"(GTSRB).":[137],"Moreover,":[138],"based":[139],"analysis":[143],"ML-training,":[145],"also":[147],"propose":[148],"attack":[150],"that":[151],"has":[152],"very":[153],"less":[154],"impact":[155],"inference":[158],"accuracy.":[159],"Towards":[160],"end,":[162],"highlight":[164],"developing":[170],"measures":[172],"provide":[174],"techniques":[180],"used":[181],"mitigate":[183],"such":[184],"threats.":[186]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2898804478","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":6},{"year":2018,"cited_by_count":1}],"updated_date":"2025-03-17T17:58:22.251409","created_date":"2018-11-09"}