{"id":"https://openalex.org/W2566261242","doi":"https://doi.org/10.1109/eusipco.2016.7760210","title":"Robust non-negative least squares using sparsity","display_name":"Robust non-negative least squares using sparsity","publication_year":2016,"publication_date":"2016-08-01","ids":{"openalex":"https://openalex.org/W2566261242","doi":"https://doi.org/10.1109/eusipco.2016.7760210","mag":"2566261242"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/eusipco.2016.7760210","pdf_url":null,"source":{"id":"https://openalex.org/S4363607854","display_name":"2021 29th European Signal Processing Conference (EUSIPCO)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5013286528","display_name":"Filip Elvander","orcid":"https://orcid.org/0000-0003-1857-2173"},"institutions":[{"id":"https://openalex.org/I1279596006","display_name":"Statistics Sweden","ror":"https://ror.org/05x7wz523","country_code":"SE","type":"government","lineage":["https://openalex.org/I1279596006"]},{"id":"https://openalex.org/I187531555","display_name":"Lund University","ror":"https://ror.org/012a77v79","country_code":"SE","type":"funder","lineage":["https://openalex.org/I187531555"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Filip Elvander","raw_affiliation_strings":["Centre for Mathematical Sciences, Lund University, Sweden"],"affiliations":[{"raw_affiliation_string":"Centre for Mathematical Sciences, Lund University, Sweden","institution_ids":["https://openalex.org/I1279596006","https://openalex.org/I187531555"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038100557","display_name":"Stefan Ingi Adalbj\u00f6rnsson","orcid":"https://orcid.org/0000-0003-0403-1544"},"institutions":[{"id":"https://openalex.org/I1279596006","display_name":"Statistics Sweden","ror":"https://ror.org/05x7wz523","country_code":"SE","type":"government","lineage":["https://openalex.org/I1279596006"]},{"id":"https://openalex.org/I187531555","display_name":"Lund University","ror":"https://ror.org/012a77v79","country_code":"SE","type":"funder","lineage":["https://openalex.org/I187531555"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Stefan Ingi Adalbjornsson","raw_affiliation_strings":["Centre for Mathematical Sciences, Lund University, Sweden"],"affiliations":[{"raw_affiliation_string":"Centre for Mathematical Sciences, Lund University, Sweden","institution_ids":["https://openalex.org/I1279596006","https://openalex.org/I187531555"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037213595","display_name":"Andreas Jakobsson","orcid":"https://orcid.org/0000-0002-2156-6973"},"institutions":[{"id":"https://openalex.org/I1279596006","display_name":"Statistics Sweden","ror":"https://ror.org/05x7wz523","country_code":"SE","type":"government","lineage":["https://openalex.org/I1279596006"]},{"id":"https://openalex.org/I187531555","display_name":"Lund University","ror":"https://ror.org/012a77v79","country_code":"SE","type":"funder","lineage":["https://openalex.org/I187531555"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Andreas Jakobsson","raw_affiliation_strings":["Centre for Mathematical Sciences, Lund University, Sweden"],"affiliations":[{"raw_affiliation_string":"Centre for Mathematical Sciences, Lund University, Sweden","institution_ids":["https://openalex.org/I1279596006","https://openalex.org/I187531555"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.322,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.338105,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":66,"max":73},"biblio":{"volume":"57","issue":null,"first_page":"61","last_page":"65"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10534","display_name":"Structural Health Monitoring Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/least-squares-function-approximation","display_name":"Least-squares function approximation","score":0.6410457},{"id":"https://openalex.org/keywords/lasso","display_name":"Lasso","score":0.5165302}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66005147},{"id":"https://openalex.org/C9936470","wikidata":"https://www.wikidata.org/wiki/Q6510405","display_name":"Least-squares function approximation","level":3,"score":0.6410457},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.61586833},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.6144925},{"id":"https://openalex.org/C37616216","wikidata":"https://www.wikidata.org/wiki/Q3218363","display_name":"Lasso (programming language)","level":2,"score":0.5165302},{"id":"https://openalex.org/C169241690","wikidata":"https://www.wikidata.org/wiki/Q7828122","display_name":"Total least squares","level":3,"score":0.45470247},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32285908},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.26592016},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.15295428},{"id":"https://openalex.org/C22789450","wikidata":"https://www.wikidata.org/wiki/Q420904","display_name":"Singular value decomposition","level":2,"score":0.0},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/eusipco.2016.7760210","pdf_url":null,"source":{"id":"https://openalex.org/S4363607854","display_name":"2021 29th European Signal Processing Conference (EUSIPCO)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1984989970","https://openalex.org/W2032944446","https://openalex.org/W2044720526","https://openalex.org/W2080009974","https://openalex.org/W2089472629","https://openalex.org/W2103399651","https://openalex.org/W2106440213","https://openalex.org/W2106469967","https://openalex.org/W2113642685","https://openalex.org/W2125298866","https://openalex.org/W2141433180","https://openalex.org/W2144039164","https://openalex.org/W2152219811","https://openalex.org/W2163398818","https://openalex.org/W2164278908","https://openalex.org/W2165685007","https://openalex.org/W2296319761","https://openalex.org/W2913535645","https://openalex.org/W4244393449","https://openalex.org/W4250589301","https://openalex.org/W4292363360"],"related_works":["https://openalex.org/W4380487384","https://openalex.org/W4299069794","https://openalex.org/W2796380742","https://openalex.org/W2374560502","https://openalex.org/W2368940260","https://openalex.org/W2352570898","https://openalex.org/W2125225254","https://openalex.org/W2043225268","https://openalex.org/W2034819163","https://openalex.org/W1986698577"],"abstract_inverted_index":{"Sparse,":[0],"non-negative":[1,14,74,125],"signals":[2],"occur":[3],"in":[4,91],"many":[5,32],"applications.":[6],"To":[7],"recover":[8],"such":[9],"signals,":[10],"estimation":[11],"posed":[12],"as":[13,120],"least":[15,75],"squares":[16,76],"problems":[17],"have":[18,28],"proven":[19],"to":[20,47,56,83,122],"be":[21,106],"fruitful.":[22],"Efficient":[23],"algorithms":[24],"with":[25],"high":[26],"accuracy":[27],"been":[29],"proposed,":[30],"but":[31],"of":[33,39,101],"them":[34,55],"assume":[35],"either":[36],"perfect":[37],"knowledge":[38],"the":[40,43,65,80,86,92,102,117,123],"dictionary":[41,52,82],"generating":[42,81],"signal,":[44],"or":[45],"attempts":[46],"explain":[48],"deviations":[49],"from":[50,64,85],"this":[51,68],"by":[53],"attributing":[54],"components":[57],"that":[58,78],"for":[59],"some":[60],"reason":[61],"is":[62],"missing":[63],"dictionary.":[66],"In":[67],"work,":[69],"we":[70],"propose":[71],"a":[72,110],"robust":[73],"algorithm":[77,96],"allows":[79],"differ":[84],"assumed":[87],"dictionary,":[88],"introducing":[89],"uncertainty":[90],"setup.":[93],"The":[94],"proposed":[95,111],"enables":[97],"an":[98],"improved":[99,118],"modeling":[100],"measurements,":[103],"and":[104],"may":[105],"efficiently":[107],"implemented":[108],"using":[109],"ADMM":[112],"implementation.":[113],"Numerical":[114],"examples":[115],"illustrate":[116],"performance":[119],"compared":[121],"standard":[124],"LASSO":[126],"estimator.":[127]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2566261242","counts_by_year":[{"year":2019,"cited_by_count":1}],"updated_date":"2025-03-23T14:18:13.835956","created_date":"2017-01-06"}