{"id":"https://openalex.org/W4405489473","doi":"https://doi.org/10.1109/embc53108.2024.10782076","title":"Advancing Cuffless Arterial Blood Pressure Waveform Estimation: Time-Series Deep Neural Network Approach","display_name":"Advancing Cuffless Arterial Blood Pressure Waveform Estimation: Time-Series Deep Neural Network Approach","publication_year":2024,"publication_date":"2024-07-15","ids":{"openalex":"https://openalex.org/W4405489473","doi":"https://doi.org/10.1109/embc53108.2024.10782076","pmid":"https://pubmed.ncbi.nlm.nih.gov/40039307"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc53108.2024.10782076","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100640942","display_name":"Bo Cheng","orcid":"https://orcid.org/0000-0003-2160-2839"},"institutions":[{"id":"https://openalex.org/I4210152380","display_name":"Shenzhen Technology University","ror":"https://ror.org/04qzpec27","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210152380"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bo Cheng","raw_affiliation_strings":["Shenzhen Technology University,College of Health Science and Environmental Engineering,Shenzhen,China"],"affiliations":[{"raw_affiliation_string":"Shenzhen Technology University,College of Health Science and Environmental Engineering,Shenzhen,China","institution_ids":["https://openalex.org/I4210152380"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101271351","display_name":"Hongda Huang","orcid":null},"institutions":[{"id":"https://openalex.org/I4210152380","display_name":"Shenzhen Technology University","ror":"https://ror.org/04qzpec27","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210152380"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hongda Huang","raw_affiliation_strings":["Shenzhen Technology University,College of Health Science and Environmental Engineering,Shenzhen,China"],"affiliations":[{"raw_affiliation_string":"Shenzhen Technology University,College of Health Science and Environmental Engineering,Shenzhen,China","institution_ids":["https://openalex.org/I4210152380"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100312942","display_name":"Zhengbi Song","orcid":null},"institutions":[{"id":"https://openalex.org/I4210152380","display_name":"Shenzhen Technology University","ror":"https://ror.org/04qzpec27","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210152380"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhengbi Song","raw_affiliation_strings":["Shenzhen Technology University,College of Health Science and Environmental Engineering,Shenzhen,China"],"affiliations":[{"raw_affiliation_string":"Shenzhen Technology University,College of Health Science and Environmental Engineering,Shenzhen,China","institution_ids":["https://openalex.org/I4210152380"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101677101","display_name":"Shenghao Wu","orcid":"https://orcid.org/0009-0003-9357-4221"},"institutions":[{"id":"https://openalex.org/I4210152380","display_name":"Shenzhen Technology University","ror":"https://ror.org/04qzpec27","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210152380"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shenghao Wu","raw_affiliation_strings":["Shenzhen Technology University,College of Health Science and Environmental Engineering,Shenzhen,China"],"affiliations":[{"raw_affiliation_string":"Shenzhen Technology University,College of Health Science and Environmental Engineering,Shenzhen,China","institution_ids":["https://openalex.org/I4210152380"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102984513","display_name":"Qing Liu","orcid":null},"institutions":[{"id":"https://openalex.org/I69356397","display_name":"Xi\u2019an Jiaotong-Liverpool University","ror":"https://ror.org/03zmrmn05","country_code":"CN","type":"funder","lineage":["https://openalex.org/I69356397"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qing Liu","raw_affiliation_strings":["Xi'an Jiaotong-Liverpool University,Department of Communication and Networking,Suzhou,China"],"affiliations":[{"raw_affiliation_string":"Xi'an Jiaotong-Liverpool University,Department of Communication and Networking,Suzhou,China","institution_ids":["https://openalex.org/I69356397"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5061663553","display_name":"Yali Zheng","orcid":"https://orcid.org/0000-0002-0479-8430"},"institutions":[{"id":"https://openalex.org/I4210152380","display_name":"Shenzhen Technology University","ror":"https://ror.org/04qzpec27","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210152380"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yali Zheng","raw_affiliation_strings":["Shenzhen Technology University,College of Health Science and Environmental Engineering,Shenzhen,China"],"affiliations":[{"raw_affiliation_string":"Shenzhen Technology University,College of Health Science and Environmental Engineering,Shenzhen,China","institution_ids":["https://openalex.org/I4210152380"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"4"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10745","display_name":"Heart Rate Variability and Autonomic Control","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10924","display_name":"Cardiovascular Health and Disease Prevention","score":0.995,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6005137},{"id":"https://openalex.org/C197424946","wikidata":"https://www.wikidata.org/wiki/Q1165717","display_name":"Waveform","level":3,"score":0.5957468},{"id":"https://openalex.org/C84393581","wikidata":"https://www.wikidata.org/wiki/Q82642","display_name":"Blood pressure","level":2,"score":0.5879949},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5845252},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.5298688},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.4892459},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3280943},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.18723103},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.1797882},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.16498455},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.15908888},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.13452777},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.0}],"mesh":[{"descriptor_ui":"D062186","descriptor_name":"Arterial Pressure","qualifier_ui":"Q000502","qualifier_name":"physiology","is_major_topic":false},{"descriptor_ui":"D001794","descriptor_name":"Blood Pressure","qualifier_ui":"Q000502","qualifier_name":"physiology","is_major_topic":false},{"descriptor_ui":"D001795","descriptor_name":"Blood Pressure Determination","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":false},{"descriptor_ui":"D000077321","descriptor_name":"Deep Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012815","descriptor_name":"Signal Processing, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc53108.2024.10782076","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/40039307","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W2904069824","https://openalex.org/W2979921992","https://openalex.org/W3081775309","https://openalex.org/W3117498368","https://openalex.org/W4200295897","https://openalex.org/W4220676114","https://openalex.org/W4229018581","https://openalex.org/W4282965153","https://openalex.org/W4317892938","https://openalex.org/W4323688066","https://openalex.org/W4324144701","https://openalex.org/W4366328432","https://openalex.org/W4381245607"],"related_works":["https://openalex.org/W3146111732","https://openalex.org/W3040712279","https://openalex.org/W2622688551","https://openalex.org/W2364769705","https://openalex.org/W2176409448","https://openalex.org/W2129841057","https://openalex.org/W2119012848","https://openalex.org/W1990205660","https://openalex.org/W1974895211","https://openalex.org/W1550175370"],"abstract_inverted_index":{"Existing":[0],"deep":[1,70],"learning":[2,71],"models":[3,72,97,165],"for":[4,63,124,149,162,166,176],"arterial":[5,168],"blood":[6],"pressure":[7],"(ABP)":[8],"estimation":[9,18],"are":[10],"becoming":[11],"increasingly":[12],"complex.":[13],"They":[14],"mainly":[15],"treat":[16],"the":[17,26,33,37,46,77,81,96,100,135,141],"as":[19],"a":[20,59,159,173],"sequence-to-sequence":[21],"(seq2seq)":[22],"task,":[23],"to":[24,109],"establish":[25],"relationship":[27],"between":[28],"input":[29],"physiological":[30,52],"signals":[31],"and":[32,80,88,121,126],"corresponding":[34],"BP":[35,169],"within":[36],"same":[38],"time":[39],"frame.":[40],"However,":[41],"this":[42,55,154],"approach":[43,144,157],"may":[44],"overlook":[45],"rich":[47],"temporal":[48],"information":[49],"embedded":[50],"in":[51,85,106,134,178],"signals.":[53],"In":[54,152],"study,":[56],"we":[57],"propose":[58],"time-series":[60,89,101,142,156],"training":[61,90,143],"strategy":[62],"ABP":[64],"waveform":[65],"prediction.":[66],"We":[67],"compared":[68,108],"two":[69],"of":[73,119],"different":[74],"sizes":[75],"-":[76,84],"smaller":[78],"gMLP":[79,125,138],"larger":[82],"UtransBPNet":[83],"both":[86],"seq2seq":[87,111],"ways.":[91],"The":[92],"findings":[93],"indicate":[94],"that,":[95],"trained":[98],"with":[99,113],"method":[102],"achieved":[103],"significant":[104],"enhancements":[105],"performance":[107],"their":[110],"counterparts,":[112],"mean":[114],"absolute":[115],"error":[116],"(MAE)":[117],"reductions":[118],"2.0":[120],"0.9":[122],"mmHg":[123],"UtransBPNet,":[127],"respectively.":[128],"This":[129],"improvement":[130],"was":[131],"more":[132],"pronounced":[133],"smaller,":[136],"simpler-structured":[137],"network.":[139],"Additionally,":[140],"exhibited":[145],"superior":[146],"predictive":[147],"abilities":[148],"out-of-distribution":[150],"data.":[151],"conclusion,":[153],"straightforward":[155],"offers":[158],"novel":[160],"perspective":[161],"developing":[163],"efficient":[164],"cuffless":[167],"estimation,":[170],"making":[171],"it":[172],"promising":[174],"candidate":[175],"implementation":[177],"edge":[179],"wearable":[180],"devices.":[181]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4405489473","counts_by_year":[],"updated_date":"2025-04-18T11:33:53.123443","created_date":"2024-12-18"}