{"id":"https://openalex.org/W4294975358","doi":"https://doi.org/10.1109/embc48229.2022.9871904","title":"CNN-Based Heart Sound Classification with an Imbalance-Compensating Weighted Loss Function","display_name":"CNN-Based Heart Sound Classification with an Imbalance-Compensating Weighted Loss Function","publication_year":2022,"publication_date":"2022-07-11","ids":{"openalex":"https://openalex.org/W4294975358","doi":"https://doi.org/10.1109/embc48229.2022.9871904","pmid":"https://pubmed.ncbi.nlm.nih.gov/36085939"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc48229.2022.9871904","pdf_url":null,"source":{"id":"https://openalex.org/S4363607706","display_name":"2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004619366","display_name":"Zishen Li","orcid":"https://orcid.org/0000-0002-3911-3059"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Zishen Li","raw_affiliation_strings":["Department of Computing, Imperial College London, UK"],"affiliations":[{"raw_affiliation_string":"Department of Computing, Imperial College London, UK","institution_ids":["https://openalex.org/I47508984"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101735569","display_name":"Yi Chang","orcid":"https://orcid.org/0000-0002-2417-1328"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Yi Chang","raw_affiliation_strings":["Department of Computing, Imperial College London, UK"],"affiliations":[{"raw_affiliation_string":"Department of Computing, Imperial College London, UK","institution_ids":["https://openalex.org/I47508984"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5043060302","display_name":"Bj\u00f6rn Sch\u00fcller","orcid":"https://orcid.org/0000-0002-6478-8699"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Bj\u00f6rn W. Schuller","raw_affiliation_strings":["Department of Computing, Imperial College London, UK"],"affiliations":[{"raw_affiliation_string":"Department of Computing, Imperial College London, UK","institution_ids":["https://openalex.org/I47508984"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":6.853,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.923679,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":83,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"4934","last_page":"4937"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12419","display_name":"Phonocardiography and Auscultation Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12419","display_name":"Phonocardiography and Auscultation Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/heart-sounds","display_name":"Heart sounds","score":0.70547205},{"id":"https://openalex.org/keywords/mel-frequency-cepstrum","display_name":"Mel-frequency cepstrum","score":0.67096627},{"id":"https://openalex.org/keywords/auscultation","display_name":"Auscultation","score":0.66912436},{"id":"https://openalex.org/keywords/cepstrum","display_name":"Cepstrum","score":0.517338}],"concepts":[{"id":"https://openalex.org/C2779435589","wikidata":"https://www.wikidata.org/wiki/Q967103","display_name":"Heart sounds","level":2,"score":0.70547205},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6967002},{"id":"https://openalex.org/C151989614","wikidata":"https://www.wikidata.org/wiki/Q440370","display_name":"Mel-frequency cepstrum","level":3,"score":0.67096627},{"id":"https://openalex.org/C2777324038","wikidata":"https://www.wikidata.org/wiki/Q779054","display_name":"Auscultation","level":2,"score":0.66912436},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.64561033},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.55246186},{"id":"https://openalex.org/C169903167","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Test set","level":2,"score":0.5447226},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.54080164},{"id":"https://openalex.org/C88485024","wikidata":"https://www.wikidata.org/wiki/Q1054571","display_name":"Cepstrum","level":2,"score":0.517338},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.510486},{"id":"https://openalex.org/C203718221","wikidata":"https://www.wikidata.org/wiki/Q491713","display_name":"Sound (geography)","level":2,"score":0.50778896},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46857643},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4361553},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.35976452},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.15781847},{"id":"https://openalex.org/C164705383","wikidata":"https://www.wikidata.org/wiki/Q10379","display_name":"Cardiology","level":1,"score":0.098296225},{"id":"https://openalex.org/C114793014","wikidata":"https://www.wikidata.org/wiki/Q52109","display_name":"Geomorphology","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[{"descriptor_ui":"D006347","descriptor_name":"Heart Sounds","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D006326","descriptor_name":"Heart Auscultation","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D010701","descriptor_name":"Phonocardiography","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":false},{"descriptor_ui":"D010701","descriptor_name":"Phonocardiography","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012815","descriptor_name":"Signal Processing, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D015431","descriptor_name":"Weight Loss","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc48229.2022.9871904","pdf_url":null,"source":{"id":"https://openalex.org/S4363607706","display_name":"2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/36085939","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W2010662891","https://openalex.org/W2052384514","https://openalex.org/W2066974899","https://openalex.org/W2076941119","https://openalex.org/W2082567546","https://openalex.org/W2194775991","https://openalex.org/W2301158262","https://openalex.org/W2557139718","https://openalex.org/W2591957616","https://openalex.org/W2593628220","https://openalex.org/W2593628332","https://openalex.org/W2594894714","https://openalex.org/W2613181244","https://openalex.org/W2622526092","https://openalex.org/W2735987108","https://openalex.org/W2799149040","https://openalex.org/W2805571860","https://openalex.org/W2811161392","https://openalex.org/W2963351448","https://openalex.org/W2963652317","https://openalex.org/W2991350222","https://openalex.org/W3090286224","https://openalex.org/W4254718357"],"related_works":["https://openalex.org/W4385672897","https://openalex.org/W2462513779","https://openalex.org/W2387604097","https://openalex.org/W2373675101","https://openalex.org/W2066804906","https://openalex.org/W2037437111","https://openalex.org/W2018086531","https://openalex.org/W1980297060","https://openalex.org/W1970711085","https://openalex.org/W106160982"],"abstract_inverted_index":{"Heart":[0],"sound":[1,26,88,131],"auscultation":[2,140],"is":[3,19],"an":[4,105],"effective":[5],"method":[6],"for":[7,138,147],"early-stage":[8],"diagnosis":[9],"of":[10,15,110],"heart":[11,25,39,87,130,139,148],"disease.":[12],"The":[13,74],"application":[14],"deep":[16,31],"neural":[17],"networks":[18],"gaining":[20],"increasing":[21],"attention":[22],"in":[23,82,150],"automated":[24,129],"classification.":[27],"This":[28,121],"paper":[29],"proposes":[30,123],"Convolutional":[32],"Neural":[33],"Networks":[34],"(CNNs)":[35],"to":[36,68,127,145],"classify":[37],"normal/abnormal":[38],"sounds,":[40],"which":[41,133],"takes":[42],"two-dimensional":[43],"Mel-scale":[44],"features":[45,103],"as":[46,102],"input,":[47],"including":[48],"Mel":[49,57,100],"frequency":[50],"cepstral":[51],"coefficients":[52],"(MFCCs)":[53],"and":[54,114,118,141],"the":[55,66,70,79,91,95,143],"Log":[56,99],"spectrum.":[58],"We":[59],"employ":[60],"two":[61],"weighted":[62],"loss":[63],"functions":[64],"during":[65],"training":[67],"mitigate":[69],"class":[71],"imbalance":[72],"issue.":[73],"model":[75,97,126],"was":[76],"developed":[77],"on":[78],"public":[80],"PhysioNet/Computing":[81],"Cardiology":[83],"Challenge":[84],"(CinC)":[85],"2016":[86],"database.":[89],"On":[90],"considered":[92],"test":[93],"set,":[94],"proposed":[96],"with":[98,112],"spectrum":[101],"achieves":[104],"Unweighted":[106],"Average":[107],"Recall":[108],"(UAR)":[109],"89.6%,":[111],"sensitivity":[113],"specificity":[115],"being":[116],"89.5%":[117],"89.7%":[119],"respectively.":[120],"work":[122],"a":[124,154],"CNN-based":[125],"enable":[128],"classification,":[132],"can":[134],"provide":[135],"auxiliary":[136],"assistance":[137],"has":[142],"potential":[144],"screen":[146],"pathologies":[149],"clinical":[151],"applications":[152],"at":[153],"relatively":[155],"low":[156],"cost.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4294975358","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":4}],"updated_date":"2024-12-13T17:40:34.303753","created_date":"2022-09-08"}