{"id":"https://openalex.org/W4295517683","doi":"https://doi.org/10.1109/embc48229.2022.9870832","title":"Design of a Parkinsonian Biomarkers Combination Optimization Method Using Rodent Model","display_name":"Design of a Parkinsonian Biomarkers Combination Optimization Method Using Rodent Model","publication_year":2022,"publication_date":"2022-07-11","ids":{"openalex":"https://openalex.org/W4295517683","doi":"https://doi.org/10.1109/embc48229.2022.9870832","pmid":"https://pubmed.ncbi.nlm.nih.gov/36086597"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/embc48229.2022.9870832","pdf_url":"https://ieeexplore.ieee.org/ielx7/9870821/9870822/09870832.pdf","source":{"id":"https://openalex.org/S4363607706","display_name":"2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://ieeexplore.ieee.org/ielx7/9870821/9870822/09870832.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051717483","display_name":"Shai Renne","orcid":null},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shai Renne","raw_affiliation_strings":["Misapplied Sciences, Inc., Pasadena, CA, USA","Tsinghua University,Beijing,P. R. China,100084"],"affiliations":[{"raw_affiliation_string":"Misapplied Sciences, Inc., Pasadena, CA, USA","institution_ids":[]},{"raw_affiliation_string":"Tsinghua University,Beijing,P. R. China,100084","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102865407","display_name":"Jiaxin Lei","orcid":"https://orcid.org/0009-0002-5438-492X"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiaxin Lei","raw_affiliation_strings":["Tsinghua University,Beijing,P. R. China,100084"],"affiliations":[{"raw_affiliation_string":"Tsinghua University,Beijing,P. R. China,100084","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101759882","display_name":"Wei Jing","orcid":"https://orcid.org/0000-0002-8794-7832"},"institutions":[{"id":"https://openalex.org/I183519381","display_name":"Capital Medical University","ror":"https://ror.org/013xs5b60","country_code":"CN","type":"education","lineage":["https://openalex.org/I183519381"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Wei","raw_affiliation_strings":["Capital Medical University,Beijing,P.R. China,100069"],"affiliations":[{"raw_affiliation_string":"Capital Medical University,Beijing,P.R. China,100069","institution_ids":["https://openalex.org/I183519381"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100656861","display_name":"Milin Zhang","orcid":"https://orcid.org/0000-0001-7544-1837"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Milin Zhang","raw_affiliation_strings":["Tsinghua University,Beijing,P. R. China,100084"],"affiliations":[{"raw_affiliation_string":"Tsinghua University,Beijing,P. R. China,100084","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":"4904","last_page":"4908"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10919","display_name":"Neurological disorders and treatments","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2728","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10919","display_name":"Neurological disorders and treatments","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2728","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10085","display_name":"Parkinson's Disease Mechanisms and Treatments","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/2728","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11601","display_name":"Neuroscience and Neural Engineering","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/2804","display_name":"Cellular and Molecular Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/beta","display_name":"BETA (programming language)","score":0.51525503},{"id":"https://openalex.org/keywords/elastic-net-regularization","display_name":"Elastic net regularization","score":0.46182615},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.43561193}],"concepts":[{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.7001033},{"id":"https://openalex.org/C151956035","wikidata":"https://www.wikidata.org/wiki/Q1132755","display_name":"Logistic regression","level":2,"score":0.63877165},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.63837904},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.574201},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.54482883},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5167912},{"id":"https://openalex.org/C2776174256","wikidata":"https://www.wikidata.org/wiki/Q830842","display_name":"BETA (programming language)","level":2,"score":0.51525503},{"id":"https://openalex.org/C203868755","wikidata":"https://www.wikidata.org/wiki/Q5353562","display_name":"Elastic net regularization","level":3,"score":0.46182615},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4474313},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.4378329},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.43561193},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.42557096},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41766366},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36080724},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.3469178},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.28906316},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.14622968},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D012107","descriptor_name":"Research Design","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D012377","descriptor_name":"Rodentia","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000818","descriptor_name":"Animals","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D015415","descriptor_name":"Biomarkers","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016000","descriptor_name":"Cluster Analysis","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D051381","descriptor_name":"Rats","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/embc48229.2022.9870832","pdf_url":"https://ieeexplore.ieee.org/ielx7/9870821/9870822/09870832.pdf","source":{"id":"https://openalex.org/S4363607706","display_name":"2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/36086597","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/embc48229.2022.9870832","pdf_url":"https://ieeexplore.ieee.org/ielx7/9870821/9870822/09870832.pdf","source":{"id":"https://openalex.org/S4363607706","display_name":"2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.71,"id":"https://metadata.un.org/sdg/15","display_name":"Life on land"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1511301388","https://openalex.org/W1520696190","https://openalex.org/W1971283363","https://openalex.org/W1972879677","https://openalex.org/W1986160889","https://openalex.org/W1996032190","https://openalex.org/W2004970732","https://openalex.org/W2010527663","https://openalex.org/W2012539045","https://openalex.org/W2037936617","https://openalex.org/W2048783706","https://openalex.org/W2061935704","https://openalex.org/W2125176389","https://openalex.org/W2134050473","https://openalex.org/W2134886133","https://openalex.org/W2141405085","https://openalex.org/W2143685192","https://openalex.org/W2148969844","https://openalex.org/W2175534813","https://openalex.org/W2406423715","https://openalex.org/W2513000478","https://openalex.org/W2584311212","https://openalex.org/W2588429935","https://openalex.org/W2591639181","https://openalex.org/W2622294281","https://openalex.org/W2741194734","https://openalex.org/W2744169335","https://openalex.org/W2744294942","https://openalex.org/W2755620129","https://openalex.org/W2898165758","https://openalex.org/W2899044624","https://openalex.org/W2905641806","https://openalex.org/W2927492584"],"related_works":["https://openalex.org/W4388745254","https://openalex.org/W4387870091","https://openalex.org/W2997212488","https://openalex.org/W2980082554","https://openalex.org/W2767419625","https://openalex.org/W2389704471","https://openalex.org/W2380784125","https://openalex.org/W2371621356","https://openalex.org/W2048488252","https://openalex.org/W1517228774"],"abstract_inverted_index":{"Adaptive":[0],"Deep":[1],"Brain":[2],"Stimulation":[3],"(aDBS)":[4],"has":[5],"been":[6],"proposed":[7,135],"in":[8,102,161],"literature":[9],"to":[10,29,132,231,238,246],"avoid":[11],"the":[12,17,56,75,79,113,134,140,158,166,218,260],"negative":[13],"consequences":[14],"associated":[15],"with":[16],"continuous":[18],"stimulation":[19],"delivered":[20],"through":[21],"traditional":[22],"deep":[23],"brain":[24],"stimulation.":[25],"This":[26,253],"work":[27,85],"seeks":[28],"determine":[30],"a":[31,37,70,87,256,265],"group":[32],"of":[33,60,142],"neural":[34,51],"biomarkers":[35,263],"that":[36],"classification":[38,106,121,227],"algorithm":[39],"could":[40],"use":[41],"on":[42,111],"an":[43,103,225,273],"aDBS":[44,274],"device":[45],"using":[46],"rodent":[47],"animal":[48],"models.":[49],"The":[50],"activities":[52],"were":[53],"acquired":[54],"from":[55,69,78,229,236,244,264],"primary":[57],"motor":[58],"cortex":[59],"four":[61,66],"Parkinsonian":[62,270],"model":[63],"rats":[64,68],"and":[65,92,97,127,152,187,211,243],"healthy":[67],"control":[71],"group.":[72],"To":[73],"overcome":[74],"variability":[76],"introduced":[77],"small":[80],"rat":[81],"sample":[82],"size,":[83],"this":[84],"proposes":[86],"novel":[88],"method":[89,257],"for":[90,233,240,248,258,268,272],"combining":[91],"running":[93],"Genetic":[94],"Feature":[95,100],"Selection":[96,101],"Forward":[98],"Stepwise":[99],"environment":[104],"where":[105],"accuracy":[107,228],"varies":[108],"greatly":[109],"based":[110],"how":[112],"folds":[114],"are":[115,130,169,196],"organized":[116],"before":[117],"cross-validation.":[118],"Three":[119],"separate":[120],"algorithms,":[122],"Logistic":[123,138,234],"Regression,":[124,139,235],"k-Nearest":[125,164,241],"Neighbor,":[126,165,242],"Random":[128,193,249],"Forest":[129],"used":[131],"verify":[133],"method.":[136],"For":[137,163,192],"set":[141,267],"Alpha":[143],"Power":[144,149,156,172,180],"(7-12":[145],"Hz),":[146,151,174,182],"High":[147,175,197],"Beta":[148,171,176,179,198,201],"(20-30":[150],"55-95":[153,183,203],"Hz":[154,184,189,204,208,213],"Gamma":[155,185,190,205,209],"shows":[157],"best":[159],"performance":[160],"classification.":[162],"characterizing":[167],"features":[168],"Low":[170],"(12-20":[173],"Power,":[177,186,199,202,206,210],"All":[178,200],"(12-30":[181],"95-105":[188,207],"Power.":[191,216],"Forest,":[194],"they":[195],"300-350":[212],"High-Frequency":[214],"Oscillations":[215],"With":[217],"selected":[219],"feature":[220],"set,":[221],"experimental":[222],"results":[223],"show":[224],"increasing":[226],"59.08%":[230],"77.69%":[232],"49.53%":[237],"73.44%":[239],"54.10%":[245],"71.15%":[247],"Forest.":[250],"Clinical":[251],"Relevance-":[252],"experiment":[254],"provides":[255],"determining":[259],"most":[261],"effective":[262],"larger":[266],"classifying":[269],"behavior":[271],"device.":[275]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4295517683","counts_by_year":[],"updated_date":"2024-12-06T01:56:44.221589","created_date":"2022-09-14"}