{"id":"https://openalex.org/W4200211627","doi":"https://doi.org/10.1109/embc46164.2021.9630705","title":"Classification of real-world pathological phonocardiograms through multi-instance learning","display_name":"Classification of real-world pathological phonocardiograms through multi-instance learning","publication_year":2021,"publication_date":"2021-11-01","ids":{"openalex":"https://openalex.org/W4200211627","doi":"https://doi.org/10.1109/embc46164.2021.9630705","pmid":"https://pubmed.ncbi.nlm.nih.gov/34891404"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc46164.2021.9630705","pdf_url":null,"source":{"id":"https://openalex.org/S4363607750","display_name":"2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025775404","display_name":"Andrea Duggento","orcid":"https://orcid.org/0000-0001-6030-5269"},"institutions":[{"id":"https://openalex.org/I116067653","display_name":"University of Rome Tor Vergata","ror":"https://ror.org/02p77k626","country_code":"IT","type":"funder","lineage":["https://openalex.org/I116067653"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Andrea Duggento","raw_affiliation_strings":["Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy","institution_ids":["https://openalex.org/I116067653"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027157505","display_name":"Allegra Conti","orcid":"https://orcid.org/0000-0003-4210-5065"},"institutions":[{"id":"https://openalex.org/I116067653","display_name":"University of Rome Tor Vergata","ror":"https://ror.org/02p77k626","country_code":"IT","type":"funder","lineage":["https://openalex.org/I116067653"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Allegra Conti","raw_affiliation_strings":["Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy","institution_ids":["https://openalex.org/I116067653"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048596584","display_name":"Maria Guerrisi","orcid":"https://orcid.org/0000-0002-7456-4349"},"institutions":[{"id":"https://openalex.org/I116067653","display_name":"University of Rome Tor Vergata","ror":"https://ror.org/02p77k626","country_code":"IT","type":"funder","lineage":["https://openalex.org/I116067653"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Maria Guerrisi","raw_affiliation_strings":["Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy","institution_ids":["https://openalex.org/I116067653"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5010629974","display_name":"Nicola Toschi","orcid":"https://orcid.org/0000-0003-1929-5833"},"institutions":[{"id":"https://openalex.org/I4210127055","display_name":"Athinoula A. Martinos Center for Biomedical Imaging","ror":"https://ror.org/032q5ym94","country_code":"US","type":"funder","lineage":["https://openalex.org/I136199984","https://openalex.org/I4210087915","https://openalex.org/I4210127055","https://openalex.org/I48633490","https://openalex.org/I63966007"]},{"id":"https://openalex.org/I116067653","display_name":"University of Rome Tor Vergata","ror":"https://ror.org/02p77k626","country_code":"IT","type":"funder","lineage":["https://openalex.org/I116067653"]}],"countries":["IT","US"],"is_corresponding":false,"raw_author_name":"Nicola Toschi","raw_affiliation_strings":["Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy","Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA","institution_ids":["https://openalex.org/I4210127055"]},{"raw_affiliation_string":"Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy","institution_ids":["https://openalex.org/I116067653"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.246,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.609329,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"771","last_page":"774"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12419","display_name":"Phonocardiography and Auscultation Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12419","display_name":"Phonocardiography and Auscultation Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9475,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/auscultation","display_name":"Auscultation","score":0.76175404},{"id":"https://openalex.org/keywords/heart-sounds","display_name":"Heart sounds","score":0.59198606}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.772128},{"id":"https://openalex.org/C2777324038","wikidata":"https://www.wikidata.org/wiki/Q779054","display_name":"Auscultation","level":2,"score":0.76175404},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.60147744},{"id":"https://openalex.org/C2779435589","wikidata":"https://www.wikidata.org/wiki/Q967103","display_name":"Heart sounds","level":2,"score":0.59198606},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5851671},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.54852426},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.50093246},{"id":"https://openalex.org/C136197465","wikidata":"https://www.wikidata.org/wiki/Q1729295","display_name":"Variety (cybernetics)","level":2,"score":0.49241436},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.4737704},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.42644918},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.42149836},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3645646},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.12032658},{"id":"https://openalex.org/C164705383","wikidata":"https://www.wikidata.org/wiki/Q10379","display_name":"Cardiology","level":1,"score":0.085984975},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[{"descriptor_ui":"D006347","descriptor_name":"Heart Sounds","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D006326","descriptor_name":"Heart Auscultation","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000069550","descriptor_name":"Machine Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D059629","descriptor_name":"Signal-To-Noise Ratio","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc46164.2021.9630705","pdf_url":null,"source":{"id":"https://openalex.org/S4363607750","display_name":"2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34891404","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Partnerships for the goals","id":"https://metadata.un.org/sdg/17","score":0.51}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W2020459286","https://openalex.org/W2039031643","https://openalex.org/W2162800060","https://openalex.org/W2510093156","https://openalex.org/W2557139718","https://openalex.org/W2592046076","https://openalex.org/W2762606908","https://openalex.org/W2950518992"],"related_works":["https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W2462513779","https://openalex.org/W2182736798","https://openalex.org/W2066804906","https://openalex.org/W2037437111","https://openalex.org/W1970711085"],"abstract_inverted_index":{"Heart":[0],"auscultation":[1,24],"is":[2,25,50,155],"an":[3,28,91,122,167],"inexpensive":[4],"and":[5,31,70,78,120,133],"fundamental":[6],"technique":[7],"to":[8,10,16,33,52,157,161],"effectively":[9],"diagnose":[11],"cardiovascular":[12],"disease.":[13],"However,":[14],"due":[15,32],"relatively":[17],"high":[18,164],"human":[19],"error":[20],"rates":[21],"even":[22],"when":[23],"performed":[26],"by":[27],"experienced":[29],"physician,":[30],"the":[34,72,112],"not":[35],"universal":[36],"availability":[37],"of":[38,48,66,114,169,174,194],"qualified":[39],"personnel":[40],"e.g.":[41,166],"in":[42,60,191],"developing":[43],"countries,":[44],"a":[45,79,172,188,192],"large":[46,64],"body":[47],"research":[49],"attempting":[51],"develop":[53],"automated,":[54],"computational":[55],"tools":[56],"for":[57,95,182],"detecting":[58],"abnormalities":[59],"heart":[61,76,97,103,143,183],"sounds.":[62],"The":[63],"heterogeneity":[65],"achievable":[67],"data":[68],"quality":[69],"devices,":[71],"variety":[73,193],"o":[74],"possible":[75,156],"pathologies,":[77],"generally":[80],"poor":[81],"signal-to-noise":[82],"ratio":[83],"make":[84],"this":[85],"problem":[86],"extremely":[87],"challenging.":[88],"We":[89,151],"present":[90],"accurate":[92],"classification":[93],"strategy":[94],"diagnosing":[96],"sounds":[98],"based":[99,129],"on":[100,130],"1)":[101],"automatic":[102],"phase":[104],"segmentation,":[105],"2)":[106],"state-of-the":[107],"art":[108],"filters":[109],"drawn":[110],"from":[111,141],"filed":[113],"speech":[115],"synthesis":[116],"(mel-frequency":[117],"cepstral":[118],"representation),":[119],"3)":[121],"ad-hoc":[123],"multi-branch,":[124],"multi-instance":[125],"artificial":[126],"neural":[127],"network":[128],"convolutional":[131],"layers":[132],"fully":[134],"connected":[135],"neuronal":[136],"ensembles":[137],"which":[138],"separately":[139],"learns":[140],"each":[142],"phase,":[144],"hence":[145],"leveraging":[146],"their":[147],"different":[148],"physiological":[149],"significance.":[150],"demonstrate":[152],"that":[153],"it":[154],"train":[158],"our":[159],"architecture":[160],"reach":[162],"very":[163],"performances,":[165],"AUC":[168],"0.87":[170],"or":[171],"sensitivity":[173],"0.97.":[175],"Our":[176],"machine-learning-based":[177],"tool":[178,190],"could":[179],"be":[180],"employed":[181],"sound":[184],"classification,":[185],"especially":[186],"as":[187],"screening":[189],"situations":[195],"including":[196],"telemedicine":[197],"applications.":[198]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4200211627","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2}],"updated_date":"2025-04-19T08:51:38.210207","created_date":"2021-12-31"}