{"id":"https://openalex.org/W4200179268","doi":"https://doi.org/10.1109/embc46164.2021.9629608","title":"Weakly Supervised Attention Map Training for Histological Localization of Colonoscopy Images","display_name":"Weakly Supervised Attention Map Training for Histological Localization of Colonoscopy Images","publication_year":2021,"publication_date":"2021-11-01","ids":{"openalex":"https://openalex.org/W4200179268","doi":"https://doi.org/10.1109/embc46164.2021.9629608","pmid":"https://pubmed.ncbi.nlm.nih.gov/34892046"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc46164.2021.9629608","pdf_url":null,"source":{"id":"https://openalex.org/S4363607750","display_name":"2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088999254","display_name":"Jangho Kwon","orcid":"https://orcid.org/0000-0002-7326-7318"},"institutions":[{"id":"https://openalex.org/I58716616","display_name":"Korea Institute of Science and Technology","ror":"https://ror.org/05kzfa883","country_code":"KR","type":"facility","lineage":["https://openalex.org/I58716616"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jangho Kwon","raw_affiliation_strings":["Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, Korea"],"affiliations":[{"raw_affiliation_string":"Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, Korea","institution_ids":["https://openalex.org/I58716616"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5009751739","display_name":"Kihwan Choi","orcid":"https://orcid.org/0000-0003-4724-0418"},"institutions":[{"id":"https://openalex.org/I58716616","display_name":"Korea Institute of Science and Technology","ror":"https://ror.org/05kzfa883","country_code":"KR","type":"facility","lineage":["https://openalex.org/I58716616"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Kihwan Choi","raw_affiliation_strings":["Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, Korea"],"affiliations":[{"raw_affiliation_string":"Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, Korea","institution_ids":["https://openalex.org/I58716616"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.654,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.670732,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"3725","last_page":"3728"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10552","display_name":"Colorectal Cancer Screening and Detection","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2730","display_name":"Oncology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10552","display_name":"Colorectal Cancer Screening and Detection","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2730","display_name":"Oncology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9902,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.45516455},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.44097465}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.8248822},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72192246},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.71077204},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6737407},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.6412219},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.57903945},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.5323437},{"id":"https://openalex.org/C2778435480","wikidata":"https://www.wikidata.org/wiki/Q840387","display_name":"Colonoscopy","level":4,"score":0.48627055},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.46268192},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.45516455},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.44709298},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4465996},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.44097465},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3374378},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.28496236},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.12674966},{"id":"https://openalex.org/C526805850","wikidata":"https://www.wikidata.org/wiki/Q188874","display_name":"Colorectal cancer","level":3,"score":0.07036835},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.0},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D007091","descriptor_name":"Image Processing, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D001288","descriptor_name":"Attention","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D003113","descriptor_name":"Colonoscopy","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc46164.2021.9629608","pdf_url":null,"source":{"id":"https://openalex.org/S4363607750","display_name":"2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34892046","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320322091","funder_display_name":"Korea Institute of Science and Technology","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W2008359794","https://openalex.org/W2063979222","https://openalex.org/W2100125385","https://openalex.org/W2108598243","https://openalex.org/W2194775991","https://openalex.org/W2302003756","https://openalex.org/W2303541029","https://openalex.org/W2316330285","https://openalex.org/W2433575101","https://openalex.org/W2484161709","https://openalex.org/W2766166720","https://openalex.org/W2892763739","https://openalex.org/W2921802966","https://openalex.org/W2962858109","https://openalex.org/W3082591901","https://openalex.org/W3135546209"],"related_works":["https://openalex.org/W83146503","https://openalex.org/W4286910063","https://openalex.org/W3203938600","https://openalex.org/W2981877337","https://openalex.org/W2169074127","https://openalex.org/W2163707935","https://openalex.org/W2162970382","https://openalex.org/W202723009","https://openalex.org/W2005234362","https://openalex.org/W1997235926"],"abstract_inverted_index":{"We":[0,99],"consider":[1],"the":[2,53,60,81,92,102,110,117,120,129],"problem":[3],"of":[4,13,57,105,119],"training":[5,51,109],"a":[6,24,42,66],"convolutional":[7,67],"neural":[8,68],"network":[9,69],"for":[10,28,95],"histological":[11,48],"localization":[12,49,103,138],"colorectal":[14],"lesions":[15,115],"from":[16],"imperfectly":[17],"annotated":[18],"datasets.":[19,58],"Given":[20],"that":[21,128],"we":[22,40,63,84],"have":[23],"colonoscopic":[25,72],"image":[26],"dataset":[27,34],"4-class":[29],"histology":[30,77,134],"classification":[31,61,135],"and":[32,136],"another":[33],"originally":[35],"dedicated":[36],"to":[37,47,70,91,112],"polyp":[38,121],"segmentation,":[39],"propose":[41],"weakly":[43],"supervised":[44],"learning":[45],"approach":[46,131],"by":[50,108],"with":[52],"two":[54],"different":[55,76],"types":[56],"With":[59],"dataset,":[62],"first":[64],"train":[65],"classify":[71],"images":[73],"into":[74],"4":[75],"categories.":[78],"By":[79],"interpreting":[80],"trained":[82],"classifier,":[83],"can":[85],"extract":[86],"an":[87],"attention":[88,106],"map":[89],"corresponding":[90],"predicted":[93],"class":[94],"each":[96],"colonoscopy":[97],"image.":[98],"further":[100],"improve":[101],"accuracy":[104],"maps":[107],"model":[111],"focus":[113],"on":[114],"under":[116],"guidance":[118],"segmentation":[122],"dataset.":[123],"The":[124],"experimental":[125],"results":[126],"show":[127],"proposed":[130],"simultaneously":[132],"improves":[133],"lesion":[137],"accuracy.":[139]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4200179268","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":2}],"updated_date":"2024-12-10T19:31:48.885669","created_date":"2021-12-31"}