{"id":"https://openalex.org/W4200206740","doi":"https://doi.org/10.1109/embc46164.2021.9629552","title":"Transformer-based CNNs: Mining Temporal Context Information for Multi-sound COVID-19 Diagnosis","display_name":"Transformer-based CNNs: Mining Temporal Context Information for Multi-sound COVID-19 Diagnosis","publication_year":2021,"publication_date":"2021-11-01","ids":{"openalex":"https://openalex.org/W4200206740","doi":"https://doi.org/10.1109/embc46164.2021.9629552","pmid":"https://pubmed.ncbi.nlm.nih.gov/34891751"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/embc46164.2021.9629552","pdf_url":"https://ieeexplore.ieee.org/ielx7/9629355/9629471/09629552.pdf","source":{"id":"https://openalex.org/S4363607750","display_name":"2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://ieeexplore.ieee.org/ielx7/9629355/9629471/09629552.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101735569","display_name":"Yi Chang","orcid":"https://orcid.org/0000-0002-2417-1328"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Yi Chang","raw_affiliation_strings":["GLAM \u2013 the Group on Language, Audio, & Music, Imperial College London, London, UK"],"affiliations":[{"raw_affiliation_string":"GLAM \u2013 the Group on Language, Audio, & Music, Imperial College London, London, UK","institution_ids":["https://openalex.org/I47508984"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063262277","display_name":"Zhao Ren","orcid":"https://orcid.org/0000-0003-0707-5016"},"institutions":[{"id":"https://openalex.org/I179225836","display_name":"University of Augsburg","ror":"https://ror.org/03p14d497","country_code":"DE","type":"education","lineage":["https://openalex.org/I179225836"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Zhao Ren","raw_affiliation_strings":["Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany"],"affiliations":[{"raw_affiliation_string":"Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany","institution_ids":["https://openalex.org/I179225836"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5043060302","display_name":"Bj\u00f6rn Sch\u00fcller","orcid":"https://orcid.org/0000-0002-6478-8699"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]},{"id":"https://openalex.org/I179225836","display_name":"University of Augsburg","ror":"https://ror.org/03p14d497","country_code":"DE","type":"education","lineage":["https://openalex.org/I179225836"]}],"countries":["DE","GB"],"is_corresponding":false,"raw_author_name":"Bjorn W. Schuller","raw_affiliation_strings":["Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany","GLAM \u2013 the Group on Language, Audio, & Music, Imperial College London, London, UK"],"affiliations":[{"raw_affiliation_string":"GLAM \u2013 the Group on Language, Audio, & Music, Imperial College London, London, UK","institution_ids":["https://openalex.org/I47508984"]},{"raw_affiliation_string":"Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany","institution_ids":["https://openalex.org/I179225836"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.663,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":7,"citation_normalized_percentile":{"value":0.81637,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"2335","last_page":"2338"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12419","display_name":"Phonocardiography and Auscultation Techniques","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/spectrogram","display_name":"Spectrogram","score":0.6063505}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7472932},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6424384},{"id":"https://openalex.org/C45273575","wikidata":"https://www.wikidata.org/wiki/Q578970","display_name":"Spectrogram","level":2,"score":0.6063505},{"id":"https://openalex.org/C3008058167","wikidata":"https://www.wikidata.org/wiki/Q84263196","display_name":"Coronavirus disease 2019 (COVID-19)","level":4,"score":0.59268665},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.5811863},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5742957},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.51364535},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.46494},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.422732},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.38791156},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38352746},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.11019069},{"id":"https://openalex.org/C524204448","wikidata":"https://www.wikidata.org/wiki/Q788926","display_name":"Infectious disease (medical specialty)","level":3,"score":0.07735327},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C2779134260","wikidata":"https://www.wikidata.org/wiki/Q12136","display_name":"Disease","level":2,"score":0.0},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[{"descriptor_ui":"D000086382","descriptor_name":"COVID-19","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000086742","descriptor_name":"COVID-19 Testing","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000086402","descriptor_name":"SARS-CoV-2","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/embc46164.2021.9629552","pdf_url":"https://ieeexplore.ieee.org/ielx7/9629355/9629471/09629552.pdf","source":{"id":"https://openalex.org/S4363607750","display_name":"2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://zenodo.org/record/7116987","pdf_url":"https://zenodo.org/record/7116987/files/91486.pdf","source":{"id":"https://openalex.org/S4306400562","display_name":"Zenodo (CERN European Organization for Nuclear Research)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I67311998","host_organization_name":"European Organization for Nuclear Research","host_organization_lineage":["https://openalex.org/I67311998"],"host_organization_lineage_names":["European Organization for Nuclear Research"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/91486","pdf_url":"https://opus.bibliothek.uni-augsburg.de/opus4/files/91486/91486.pdf","source":{"id":"https://openalex.org/S4306400930","display_name":"OPUS (Augsburg University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I119916105","host_organization_name":"Augsburg University","host_organization_lineage":["https://openalex.org/I119916105"],"host_organization_lineage_names":["Augsburg University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34891751","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/embc46164.2021.9629552","pdf_url":"https://ieeexplore.ieee.org/ielx7/9629355/9629471/09629552.pdf","source":{"id":"https://openalex.org/S4363607750","display_name":"2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Good health and well-being","score":0.84,"id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W2519517504","https://openalex.org/W2765407302","https://openalex.org/W2884561390","https://openalex.org/W2919115771","https://openalex.org/W2962949934","https://openalex.org/W2963196092","https://openalex.org/W2964347220","https://openalex.org/W2991350222","https://openalex.org/W3012751338","https://openalex.org/W3015832261","https://openalex.org/W3016010032","https://openalex.org/W3028563376","https://openalex.org/W3049446265","https://openalex.org/W3081012644","https://openalex.org/W3088067841","https://openalex.org/W3104903508","https://openalex.org/W3180409537","https://openalex.org/W3196633546","https://openalex.org/W3196831814","https://openalex.org/W3198173682","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4402568167","https://openalex.org/W4375868962","https://openalex.org/W3179495260","https://openalex.org/W3127543252","https://openalex.org/W2897924318","https://openalex.org/W2530685530","https://openalex.org/W2138997758","https://openalex.org/W2088854863","https://openalex.org/W2011227383","https://openalex.org/W1976719989"],"abstract_inverted_index":{"Due":[0],"to":[1,14,31,72,84,100],"the":[2,29,74,98,106,114,122],"COronaVIrus":[3],"Disease":[4],"2019":[5],"(COVID-19)":[6],"pandemic,":[7],"early":[8],"screening":[9],"of":[10,65],"COVID-19":[11,19,51,120],"is":[12],"essential":[13],"prevent":[15],"its":[16],"transmission.":[17],"Detecting":[18],"with":[20],"computer":[21],"audition":[22],"techniques":[23],"has":[24],"in":[25,97],"recent":[26],"studies":[27],"shown":[28],"potential":[30],"achieve":[32],"a":[33,93],"fast,":[34],"cheap,":[35],"and":[36,42,47,68,92,128,132],"ecologically":[37],"friendly":[38],"diagnosis.":[39],"Respiratory":[40],"sounds":[41,66],"speech":[43],"may":[44],"contain":[45],"rich":[46],"complementary":[48],"information":[49,104],"about":[50],"clinical":[52],"conditions.":[53],"Therefore,":[54],"we":[55,78],"propose":[56],"training":[57],"three":[58,63],"deep":[59],"neural":[60],"networks":[61],"on":[62,121],"types":[64],"(breathing/counting/vowel)":[67],"assembling":[69],"these":[70],"models":[71],"improve":[73],"performance.":[75],"More":[76],"specifically,":[77],"employ":[79],"Convolutional":[80],"Neural":[81],"Networks":[82],"(CNNs)":[83],"extract":[85],"spatial":[86],"representations":[87],"from":[88,105],"log":[89],"Mel":[90],"spectrograms":[91],"multi-head":[94],"attention":[95],"mechanism":[96],"transformer":[99],"mine":[101],"temporal":[102],"context":[103],"CNNs'":[107],"outputs.":[108],"The":[109],"experimental":[110],"results":[111],"demonstrate":[112],"that":[113],"transformer-based":[115],"CNNs":[116,131],"can":[117],"effectively":[118],"detect":[119],"DiCOVA":[123],"Track-2":[124],"database":[125],"(AUC:":[126],"70.0%)":[127],"outperform":[129],"simple":[130],"hybrid":[133],"CNN-RNNs.":[134]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4200206740","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":4}],"updated_date":"2024-12-29T15:24:11.847371","created_date":"2021-12-31"}