{"id":"https://openalex.org/W2019765234","doi":"https://doi.org/10.1109/embc.2013.6610501","title":"Non-negative matrix factorization and sparse representation for sleep signal classification","display_name":"Non-negative matrix factorization and sparse representation for sleep signal classification","publication_year":2013,"publication_date":"2013-07-01","ids":{"openalex":"https://openalex.org/W2019765234","doi":"https://doi.org/10.1109/embc.2013.6610501","mag":"2019765234","pmid":"https://pubmed.ncbi.nlm.nih.gov/24110688"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc.2013.6610501","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5108636075","display_name":"Mehrnaz Shokrollahi","orcid":null},"institutions":[{"id":"https://openalex.org/I530967","display_name":"Toronto Metropolitan University","ror":"https://ror.org/05g13zd79","country_code":"CA","type":"funder","lineage":["https://openalex.org/I530967"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Mehrnaz Shokrollahi","raw_affiliation_strings":["Dept. of Electr. Eng., Ryerson Univ., Toronto, ON, Canada"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng., Ryerson Univ., Toronto, ON, Canada","institution_ids":["https://openalex.org/I530967"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086845888","display_name":"Sridhar Krishnan","orcid":"https://orcid.org/0000-0002-4659-564X"},"institutions":[{"id":"https://openalex.org/I530967","display_name":"Toronto Metropolitan University","ror":"https://ror.org/05g13zd79","country_code":"CA","type":"funder","lineage":["https://openalex.org/I530967"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Sridhar Krishnan","raw_affiliation_strings":["Dept. of Electr. Eng., Ryerson Univ., Toronto, ON, Canada"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng., Ryerson Univ., Toronto, ON, Canada","institution_ids":["https://openalex.org/I530967"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.241,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.594658,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"4318","last_page":"4321"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10784","display_name":"Muscle activation and electromyography studies","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/non-negative-matrix-factorization","display_name":"Non-negative Matrix Factorization","score":0.83567536},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.6923093},{"id":"https://openalex.org/keywords/spectrogram","display_name":"Spectrogram","score":0.46294582},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.42793104}],"concepts":[{"id":"https://openalex.org/C152671427","wikidata":"https://www.wikidata.org/wiki/Q10843505","display_name":"Non-negative matrix factorization","level":4,"score":0.83567536},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.7069026},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.6967131},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.6923093},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6586405},{"id":"https://openalex.org/C124066611","wikidata":"https://www.wikidata.org/wiki/Q28684319","display_name":"Sparse approximation","level":2,"score":0.57730895},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5699588},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.52907664},{"id":"https://openalex.org/C142433447","wikidata":"https://www.wikidata.org/wiki/Q7806653","display_name":"Time\u2013frequency analysis","level":3,"score":0.48323545},{"id":"https://openalex.org/C45273575","wikidata":"https://www.wikidata.org/wiki/Q578970","display_name":"Spectrogram","level":2,"score":0.46294582},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.42793104},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.0},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D012890","descriptor_name":"Sleep","qualifier_ui":"Q000502","qualifier_name":"physiology","is_major_topic":true},{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D058256","descriptor_name":"Brain Waves","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012890","descriptor_name":"Sleep","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D058067","descriptor_name":"Wavelet Analysis","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc.2013.6610501","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/24110688","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.53},{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.42}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1680392829","https://openalex.org/W1890834058","https://openalex.org/W2070491509","https://openalex.org/W2074079857","https://openalex.org/W2087256716","https://openalex.org/W2097690077","https://openalex.org/W2099447390","https://openalex.org/W2118718620","https://openalex.org/W2142572549","https://openalex.org/W2145779795","https://openalex.org/W2146047955","https://openalex.org/W2148681587","https://openalex.org/W2152540937","https://openalex.org/W2155275431","https://openalex.org/W2164939161","https://openalex.org/W2296399167"],"related_works":["https://openalex.org/W4390394189","https://openalex.org/W2792706544","https://openalex.org/W2577807713","https://openalex.org/W2551137307","https://openalex.org/W2539013788","https://openalex.org/W2123043102","https://openalex.org/W2113526703","https://openalex.org/W2098101267","https://openalex.org/W2037504162","https://openalex.org/W1889291648"],"abstract_inverted_index":{"Real-life":[0],"signals":[1,5,28,117],"such":[2,35],"as":[3,36,149],"biomedical":[4,86],"are":[6,119],"non-stationary":[7,38],"and":[8,13,208],"random":[9,49],"in":[10,65,121],"their":[11,37,48],"pattern,":[12],"cannot":[14],"be":[15,191],"characterized":[16],"by":[17],"any":[18],"specific":[19],"waveform":[20],"or":[21],"spectral":[22],"content.":[23],"Processing":[24],"of":[25,31,105,125,166,186,210],"these":[26],"natural":[27],"involves":[29],"consideration":[30],"certain":[32],"significant":[33],"attributes":[34],"behavior":[39],"over":[40],"time,":[41],"scaling":[42],"behavior,":[43,50],"translation":[44],"invariance.":[45],"Due":[46],"to":[47,57,71,130,151,194],"the":[51,123,131,152,159,171,183,187,195],"existing":[52],"discriminative":[53],"methods":[54],"often":[55],"fail":[56],"provide":[58],"a":[59,77,81,91,111],"reasonable":[60],"quantification":[61,104,207],"performance,":[62],"thereby":[63],"resulting":[64],"poor":[66,137],"classification":[67,138,156],"rates.":[68],"In":[69],"order":[70],"address":[72],"this":[73,199],"issue,":[74],"there":[75],"exists":[76],"need":[78],"for":[79,85,103,155,175,206],"defining":[80],"suitable":[82],"theoretical":[83],"framework":[84,98],"signals.":[87,107,133,181,213],"We":[88],"have":[89],"proposed,":[90],"robust":[92],"Time-Frequency":[93],"Nonnegative":[94],"Matrix":[95],"Factorization":[96],"(TF-NMF)":[97],"that":[99,118,146],"uses":[100],"sparse":[101,153],"representation":[102,154],"sleep":[106,176],"This":[108,134],"scheme":[109],"incorporates":[110],"novel":[112],"feature":[113],"extraction":[114],"algorithm.":[115],"For":[116],"nonstationary":[120],"nature,":[122],"degree":[124],"sparsity":[126],"is":[127],"lower":[128],"compared":[129,193],"stationary":[132],"results":[135],"into":[136],"accuracy.":[139],"However":[140],"our":[141],"proposed":[142,188],"approach":[143,174],"has":[144],"proven":[145],"using":[147,170,179],"NMF":[148],"input":[150],"will":[157],"improve":[158],"discrimination":[160],"performance.":[161],"Overall,":[162],"maximum":[163],"cross-validation":[164],"performance":[165],"87:9%":[167],"was":[168],"obtained,":[169],"leave-one-out":[172],"(LOO)":[173],"abnormality":[177],"detection":[178],"EMG":[180],"Although":[182],"computational":[184],"complexity":[185],"algorithm":[189],"might":[190],"higher":[192],"other":[196],"similar":[197],"methods,":[198],"TF-NMF":[200],"based":[201],"method":[202],"shows":[203],"great":[204],"potential":[205],"localization":[209],"time":[211],"varying":[212]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2019765234","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":1}],"updated_date":"2025-04-24T00:40:15.068528","created_date":"2016-06-24"}