{"id":"https://openalex.org/W2035986876","doi":"https://doi.org/10.1109/embc.2013.6609663","title":"Application of a variation of empirical mode decomposition and teager energy operator to EEG signals for mental task classification","display_name":"Application of a variation of empirical mode decomposition and teager energy operator to EEG signals for mental task classification","publication_year":2013,"publication_date":"2013-07-01","ids":{"openalex":"https://openalex.org/W2035986876","doi":"https://doi.org/10.1109/embc.2013.6609663","mag":"2035986876","pmid":"https://pubmed.ncbi.nlm.nih.gov/24109850"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc.2013.6609663","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102984725","display_name":"Muhammad Kaleem","orcid":"https://orcid.org/0000-0002-3890-7383"},"institutions":[{"id":"https://openalex.org/I530967","display_name":"Toronto Metropolitan University","ror":"https://ror.org/05g13zd79","country_code":"CA","type":"education","lineage":["https://openalex.org/I530967"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"M. Kaleem","raw_affiliation_strings":["Dept. of Electr. Eng., Ryerson Univ., Toronto, ON, Canada"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng., Ryerson Univ., Toronto, ON, Canada","institution_ids":["https://openalex.org/I530967"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055751982","display_name":"Aziz Guergachi","orcid":"https://orcid.org/0000-0001-9785-9097"},"institutions":[{"id":"https://openalex.org/I530967","display_name":"Toronto Metropolitan University","ror":"https://ror.org/05g13zd79","country_code":"CA","type":"education","lineage":["https://openalex.org/I530967"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"A. Guergachi","raw_affiliation_strings":["Ted Rogers Sch. of Inf. Technol. Manage., Ryerson Univ., Toronto, ON, Canada"],"affiliations":[{"raw_affiliation_string":"Ted Rogers Sch. of Inf. Technol. Manage., Ryerson Univ., Toronto, ON, Canada","institution_ids":["https://openalex.org/I530967"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086845888","display_name":"Sridhar Krishnan","orcid":"https://orcid.org/0000-0002-4659-564X"},"institutions":[{"id":"https://openalex.org/I530967","display_name":"Toronto Metropolitan University","ror":"https://ror.org/05g13zd79","country_code":"CA","type":"education","lineage":["https://openalex.org/I530967"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"S. Krishnan","raw_affiliation_strings":["Dept. of Electr. Eng., Ryerson Univ., Toronto, ON, Canada"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng., Ryerson Univ., Toronto, ON, Canada","institution_ids":["https://openalex.org/I530967"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.214,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":6,"citation_normalized_percentile":{"value":0.648305,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"965","last_page":"968"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/energy-operator","display_name":"Energy operator","score":0.7427238}],"concepts":[{"id":"https://openalex.org/C25570617","wikidata":"https://www.wikidata.org/wiki/Q1006462","display_name":"Hilbert\u2013Huang transform","level":3,"score":0.8745763},{"id":"https://openalex.org/C19579662","wikidata":"https://www.wikidata.org/wiki/Q461145","display_name":"Energy operator","level":3,"score":0.7427238},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.68510896},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6423639},{"id":"https://openalex.org/C522805319","wikidata":"https://www.wikidata.org/wiki/Q179965","display_name":"Electroencephalography","level":2,"score":0.62856257},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62343127},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.59457403},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5233711},{"id":"https://openalex.org/C186370098","wikidata":"https://www.wikidata.org/wiki/Q442787","display_name":"Energy (signal processing)","level":2,"score":0.47162724},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.46650618},{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.431096},{"id":"https://openalex.org/C142433447","wikidata":"https://www.wikidata.org/wiki/Q7806653","display_name":"Time\u2013frequency analysis","level":3,"score":0.41698954},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.25867313},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.18280876},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.11599961},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.099797994},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C118552586","wikidata":"https://www.wikidata.org/wiki/Q7867","display_name":"Psychiatry","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D004569","descriptor_name":"Electroencephalography","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D007361","descriptor_name":"Intelligence Tests","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D012815","descriptor_name":"Signal Processing, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D013647","descriptor_name":"Task Performance and Analysis","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/embc.2013.6609663","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/24109850","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy","score":0.88}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1482474999","https://openalex.org/W1973469542","https://openalex.org/W2005387402","https://openalex.org/W2007221293","https://openalex.org/W2056295478","https://openalex.org/W2084920248","https://openalex.org/W2112421811","https://openalex.org/W2117787517","https://openalex.org/W2157000920","https://openalex.org/W2159326289","https://openalex.org/W4230663420"],"related_works":["https://openalex.org/W3003840128","https://openalex.org/W2905220255","https://openalex.org/W2403656097","https://openalex.org/W2364188284","https://openalex.org/W2356737465","https://openalex.org/W2189003114","https://openalex.org/W2108583803","https://openalex.org/W2078332635","https://openalex.org/W1969685563","https://openalex.org/W116012085"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"a":[3,13,68,72,76,119],"simple":[4,120],"and":[5,23,71,110,139],"effective":[6],"methodology":[7],"for":[8],"mental":[9,40,114],"task":[10],"classification":[11,112,129],"using":[12,48,99,118],"novel":[14],"variation":[15,50],"of":[16,39,51,64,92,113,131,145],"the":[17,24,49,65,88,123,143,146],"empirical":[18],"mode":[19],"decomposition":[20,98],"(EMD)":[21],"algorithm":[22],"Teager":[25,80],"energy":[26,81,90,102],"operator":[27,82],"applied":[28,85],"to":[29,36,75,86,106],"electroencephalography":[30],"(EEG)":[31],"signals.":[32],"EEG":[33],"signals":[34,66],"corresponding":[35],"various":[37],"types":[38],"tasks":[41,115],"performed":[42,117],"by":[43],"human":[44],"subjects":[45],"are":[46,104],"decomposed":[47],"EMD,":[52],"called":[53],"Empirical":[54],"Mode":[55],"Decomposition-Modified":[56],"Peak":[57],"Selection":[58],"(EMD-MPS),":[59],"which":[60],"allows":[61],"direct":[62],"separation":[63,78],"into":[67],"de-trended":[69],"component,":[70],"trend,":[73],"according":[74],"frequency":[77],"criterion.":[79],"is":[83,116,133],"then":[84],"calculate":[87],"average":[89,127],"values":[91,103],"both":[93],"components":[94],"obtained":[95],"after":[96],"signal":[97],"EMD-MPS.":[100],"These":[101],"used":[105],"construct":[107],"feature":[108],"vectors,":[109],"one-versus-one":[111],"classifier,":[121],"namely":[122],"1-NN":[124],"classifier.":[125],"An":[126],"correct":[128],"rate":[130],"87%":[132],"obtained,":[134],"improving":[135],"on":[136],"previous":[137],"results":[138],"thereby":[140],"also":[141],"demonstrating":[142],"effectiveness":[144],"methodology.":[147]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2035986876","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2016,"cited_by_count":2},{"year":2013,"cited_by_count":1}],"updated_date":"2024-12-14T00:26:12.024366","created_date":"2016-06-24"}