{"id":"https://openalex.org/W4400034046","doi":"https://doi.org/10.1109/eais58494.2024.10570017","title":"Quantifying uncertainty in Bayesian Networks structural learning","display_name":"Quantifying uncertainty in Bayesian Networks structural learning","publication_year":2024,"publication_date":"2024-05-23","ids":{"openalex":"https://openalex.org/W4400034046","doi":"https://doi.org/10.1109/eais58494.2024.10570017"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/eais58494.2024.10570017","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5104335907","display_name":"Vitor O. Barth","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Vitor O. Barth","raw_affiliation_strings":["University of São Paulo,São Carlos School of Engineering,Dept. of Electrical and Computer Engineering"],"affiliations":[{"raw_affiliation_string":"University of São Paulo,São Carlos School of Engineering,Dept. of Electrical and Computer Engineering","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078560112","display_name":"Henrique O. Caetano","orcid":"https://orcid.org/0000-0002-3624-7924"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Henrique O. Caetano","raw_affiliation_strings":["University of São Paulo,São Carlos School of Engineering,Dept. of Electrical and Computer Engineering"],"affiliations":[{"raw_affiliation_string":"University of São Paulo,São Carlos School of Engineering,Dept. of Electrical and Computer Engineering","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020973468","display_name":"Carlos Dias Maciel","orcid":"https://orcid.org/0000-0003-0137-6678"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Carlos D. Maciel","raw_affiliation_strings":["University of São Paulo,São Carlos School of Engineering,Dept. of Electrical and Computer Engineering"],"affiliations":[{"raw_affiliation_string":"University of São Paulo,São Carlos School of Engineering,Dept. of Electrical and Computer Engineering","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5077212321","display_name":"Marco Aiello","orcid":"https://orcid.org/0000-0002-0764-2124"},"institutions":[{"id":"https://openalex.org/I100066346","display_name":"University of Stuttgart","ror":"https://ror.org/04vnq7t77","country_code":"DE","type":"education","lineage":["https://openalex.org/I100066346"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Marco Aiello","raw_affiliation_strings":["Department of Service Computing, Institute for Architecture of Application Systems, University of Stuttgart"],"affiliations":[{"raw_affiliation_string":"Department of Service Computing, Institute for Architecture of Application Systems, University of Stuttgart","institution_ids":["https://openalex.org/I100066346"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9221,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9221,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6559837},{"id":"https://openalex.org/C33724603","wikidata":"https://www.wikidata.org/wiki/Q812540","display_name":"Bayesian network","level":2,"score":0.6529108},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.6013103},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.52087164},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.452879}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/eais58494.2024.10570017","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321091","funder_display_name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","award_id":null},{"funder":"https://openalex.org/F4320322025","funder_display_name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1615454278","https://openalex.org/W1636375694","https://openalex.org/W1953503717","https://openalex.org/W2110575115","https://openalex.org/W2115744219","https://openalex.org/W2144731007","https://openalex.org/W2164351502","https://openalex.org/W2171620180","https://openalex.org/W2298329032","https://openalex.org/W2486285194","https://openalex.org/W2791533036","https://openalex.org/W2923807584","https://openalex.org/W2948579453","https://openalex.org/W3149930686","https://openalex.org/W3173192496","https://openalex.org/W3181049569","https://openalex.org/W3201412947","https://openalex.org/W4389237317"],"related_works":["https://openalex.org/W4394896187","https://openalex.org/W4386462264","https://openalex.org/W4364306694","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W4283697347","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424"],"abstract_inverted_index":{"The":[0,191],"key":[1],"goals":[2],"in":[3,66,234,274],"learning":[4,122],"Bayesian":[5,99,121,124],"networks":[6,100],"(BNs)":[7,126],"from":[8,75,102,112,127],"data":[9,73,128],"are":[10,221],"to":[11,19,55,84,159,180,225,269],"identify":[12,56],"significant":[13],"statistical":[14],"relationships":[15,29],"between":[16],"variables":[17],"and":[18,93,114,137,177,217,223,252,284],"build":[20],"a":[21,82,143,164,184,188,208,210],"Directed":[22],"Acyclic":[23],"Graph":[24],"(DAG)":[25],"that":[26,263],"represents":[27,61],"these":[28],"through":[30],"Joint":[31],"Probability":[32],"Distributions.":[33],"Most":[34],"research":[35],"relies":[36],"on":[37],"score-based":[38],"or":[39],"conditional":[40],"test":[41],"methods":[42],"for":[43,89,187],"model":[44],"selection.":[45],"However,":[46],"when":[47,71],"using":[48],"real-world":[49],"data,":[50],"it":[51,105,156,182],"can":[52],"be":[53],"challenging":[54],"whether":[57],"the":[58,62,67,86,91,107,120,131,135,148,151,161,169,200,213,227,243,246,254,258,270,275,281,286,289],"learned":[59,247],"DAG":[60],"underlying":[63],"relations":[64],"inherent":[65],"limited":[68],"datasets,":[69],"particularly":[70],"evaluating":[72,147,253],"obtained":[74],"multiple":[76],"independent":[77,115],"sources.":[78],"This":[79,117],"study":[80],"presents":[81],"methodology":[83],"assess":[85],"credible":[87],"interval":[88],"both":[90],"existence":[92,136,162],"direction":[94],"of":[95,109,123,139,150,153,163,202,245,257,288],"each":[96,140,154],"edge":[97,141,173],"within":[98,168],"derived":[101],"data.":[103,290],"Furthermore,":[104],"explores":[106],"fusion":[108],"models":[110],"acquired":[111],"distinct":[113],"datasets.":[116],"approach":[118,265],"enables":[119],"Networks":[125],"by":[129,197,206],"treating":[130],"uncertainty":[132],"associated":[133],"with":[134,237,249],"orientation":[138,152],"as":[142],"random":[144],"variable.":[145,190],"By":[146,241],"probability":[149],"edge,":[155],"is":[157,178,199],"possible":[158],"suggest":[160],"potential":[165],"latent":[166,189],"variable":[167],"dataset.":[170],"If":[171],"an":[172],"exhibits":[174],"equiprobable":[175],"directions":[176],"verified":[179],"exist,":[181],"becomes":[183],"plausible":[185],"hypothesis":[186],"Fast":[192],"Causal":[193],"Algorithm,":[194],"originally":[195],"introduced":[196],"[1],":[198],"foundation":[201],"this":[203],"approach.":[204],"Finally,":[205],"employing":[207],"maximum":[209],"posteriori":[211],"estimation,":[212],"most":[214,271],"prominent":[215],"edges":[216],"their":[218],"respective":[219],"orientations":[220],"identified":[222],"employed":[224],"create":[226],"leading":[228],"DAG.":[229],"We":[230],"present":[231],"our":[232,264],"findings":[233],"simulated":[235],"datasets":[236],"different":[238],"length":[239],"sizes.":[240],"comparing":[242],"structure":[244],"DAGs":[248],"existing":[250],"structures":[251],"inference":[255],"capabilities":[256],"final":[259],"BN,":[260],"we":[261],"establish":[262],"achieves":[266],"results":[267],"comparable":[268],"recent":[272],"studies":[273],"field,":[276],"while":[277],"offering":[278],"insights":[279],"into":[280],"model's":[282],"reliability":[283],"improving":[285],"use":[287]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4400034046","counts_by_year":[],"updated_date":"2025-01-22T01:08:04.476055","created_date":"2024-06-27"}