{"id":"https://openalex.org/W2109210128","doi":"https://doi.org/10.1109/dsn.2005.11","title":"A Novel Approach for Fitting Probability Distributions to Real Trace Data with the EM Algorithm","display_name":"A Novel Approach for Fitting Probability Distributions to Real Trace Data with the EM Algorithm","publication_year":2005,"publication_date":"2005-07-27","ids":{"openalex":"https://openalex.org/W2109210128","doi":"https://doi.org/10.1109/dsn.2005.11","mag":"2109210128"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsn.2005.11","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://webspn.hit.bme.hu/~telek/cikkek/thum05a.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053615108","display_name":"Axel Th\u00fcmmler","orcid":null},"institutions":[{"id":"https://openalex.org/I200332995","display_name":"TU Dortmund University","ror":"https://ror.org/01k97gp34","country_code":"DE","type":"funder","lineage":["https://openalex.org/I200332995"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"A. Thummler","raw_affiliation_strings":["Dept. of Comput. Sci., Dortmund Univ., Germany"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci., Dortmund Univ., Germany","institution_ids":["https://openalex.org/I200332995"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022119933","display_name":"Peter Buchholz","orcid":"https://orcid.org/0000-0002-9966-7686"},"institutions":[{"id":"https://openalex.org/I200332995","display_name":"TU Dortmund University","ror":"https://ror.org/01k97gp34","country_code":"DE","type":"funder","lineage":["https://openalex.org/I200332995"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"P. Buchholz","raw_affiliation_strings":["Dept. of Comput. Sci., Dortmund Univ., Germany"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci., Dortmund Univ., Germany","institution_ids":["https://openalex.org/I200332995"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058423790","display_name":"Mikl\u00f3s Telek","orcid":"https://orcid.org/0000-0001-9600-6084"},"institutions":[{"id":"https://openalex.org/I29770179","display_name":"Budapest University of Technology and Economics","ror":"https://ror.org/02w42ss30","country_code":"HU","type":"funder","lineage":["https://openalex.org/I29770179"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"M. Telek","raw_affiliation_strings":["Budapest Univ. of Technology & Economics"],"affiliations":[{"raw_affiliation_string":"Budapest Univ. of Technology & Economics","institution_ids":["https://openalex.org/I29770179"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":8.285,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":51,"citation_normalized_percentile":{"value":0.986135,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"712","last_page":"721"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10138","display_name":"Network Traffic and Congestion Control","score":0.9803,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12146","display_name":"Power Line Communications and Noise","score":0.9768,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/trace","display_name":"TRACE (psycholinguistics)","score":0.5691262},{"id":"https://openalex.org/keywords/data-type","display_name":"Data type","score":0.45844176},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.434488}],"concepts":[{"id":"https://openalex.org/C182081679","wikidata":"https://www.wikidata.org/wiki/Q1275153","display_name":"Expectation\u2013maximization algorithm","level":3,"score":0.64148176},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.6383041},{"id":"https://openalex.org/C112972136","wikidata":"https://www.wikidata.org/wiki/Q7595718","display_name":"Stability (learning theory)","level":2,"score":0.5758305},{"id":"https://openalex.org/C75291252","wikidata":"https://www.wikidata.org/wiki/Q1315756","display_name":"TRACE (psycholinguistics)","level":2,"score":0.5691262},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5610732},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.5555532},{"id":"https://openalex.org/C138958017","wikidata":"https://www.wikidata.org/wiki/Q190087","display_name":"Data type","level":2,"score":0.45844176},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.434488},{"id":"https://openalex.org/C149441793","wikidata":"https://www.wikidata.org/wiki/Q200726","display_name":"Probability distribution","level":2,"score":0.42470485},{"id":"https://openalex.org/C2777299769","wikidata":"https://www.wikidata.org/wiki/Q3707858","display_name":"Type (biology)","level":2,"score":0.42042577},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2991194},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.21634233},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.120337516},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.095131695},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsn.2005.11","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.2882","pdf_url":"http://webspn.hit.bme.hu/~telek/cikkek/thum05a.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.2882","pdf_url":"http://webspn.hit.bme.hu/~telek/cikkek/thum05a.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1523220017","https://openalex.org/W1525215372","https://openalex.org/W1570713732","https://openalex.org/W1577308340","https://openalex.org/W1969531493","https://openalex.org/W198386400","https://openalex.org/W1986771252","https://openalex.org/W1992580876","https://openalex.org/W2031894686","https://openalex.org/W2038290120","https://openalex.org/W2045129218","https://openalex.org/W2049633694","https://openalex.org/W2052788051","https://openalex.org/W2110167495","https://openalex.org/W2117853077","https://openalex.org/W2132863287","https://openalex.org/W2162778980","https://openalex.org/W2164799550","https://openalex.org/W2165969640","https://openalex.org/W3129711340","https://openalex.org/W4232023503"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2121910908","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"The":[0,81],"representation":[1],"of":[2,24,30,57,62,74,104,129],"general":[3],"distributions":[4,10,32],"or":[5,111],"measured":[6],"data":[7,34,105],"by":[8],"phase-type":[9,31,58,98],"is":[11,50,79],"an":[12,72],"important":[13],"and":[14,41,92,120,141,149],"non-trivial":[15],"task":[16],"in":[17,88],"analytical":[18],"modeling.":[19],"Although":[20],"a":[21,47,54,89,101],"large":[22],"number":[23],"different":[25],"methods":[26,144],"for":[27,100,138],"fitting":[28,71,123,132],"parameters":[29],"to":[33,65],"traces":[35,106,148],"exist,":[36],"many":[37],"approaches":[38],"lack":[39],"efficiency":[40],"numerical":[42],"stability.":[43],"In":[44],"this":[45],"paper,":[46],"novel":[48],"approach":[49,95,140],"presented":[51],"that":[52,84,107],"fits":[53],"restricted":[55],"class":[56],"distributions,":[59,64],"namely":[60],"mixtures":[61],"Erlang":[63],"trace":[66],"data.":[67],"For":[68],"the":[69,75,127,130],"parameter":[70],"algorithm":[73],"expectation":[76],"maximization":[77],"type":[78],"developed.":[80],"paper":[82],"shows":[83],"these":[85],"choices":[86],"result":[87],"very":[90],"efficient":[91,119],"numerically":[93],"stable":[94,122],"which":[96],"yields":[97],"approximations":[99,114],"wide":[102],"range":[103],"are":[108],"as":[109],"good":[110],"better":[112],"than":[113],"computed":[115],"with":[116],"other":[117,143],"less":[118,121],"methods.":[124],"To":[125],"illustrate":[126],"effectiveness":[128],"proposed":[131],"algorithm,":[133],"we":[134],"present":[135],"comparative":[136],"results":[137],"our":[139],"two":[142,150],"using":[145],"six":[146],"benchmark":[147],"real":[151],"traffic":[152],"traces.":[153]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2109210128","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":4}],"updated_date":"2025-03-15T15:11:47.127342","created_date":"2016-06-24"}