{"id":"https://openalex.org/W2969236120","doi":"https://doi.org/10.1109/dsn-w.2019.00016","title":"NV-DNN: Towards Fault-Tolerant DNN Systems with N-Version Programming","display_name":"NV-DNN: Towards Fault-Tolerant DNN Systems with N-Version Programming","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2969236120","doi":"https://doi.org/10.1109/dsn-w.2019.00016","mag":"2969236120"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsn-w.2019.00016","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5077533270","display_name":"Hui Xu","orcid":"https://orcid.org/0000-0003-2970-3984"},"institutions":[{"id":"https://openalex.org/I4210116924","display_name":"Chinese University of Hong Kong, Shenzhen","ror":"https://ror.org/02d5ks197","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633","https://openalex.org/I180726961","https://openalex.org/I4210116924"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hui Xu","raw_affiliation_strings":["Shenzhen Research Institute, The Chinese University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"Shenzhen Research Institute, The Chinese University of Hong Kong","institution_ids":["https://openalex.org/I4210116924"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090114918","display_name":"Zhuangbin Chen","orcid":"https://orcid.org/0009-0000-3686-8029"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"HK","type":"funder","lineage":["https://openalex.org/I177725633"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Zhuangbin Chen","raw_affiliation_strings":["Department of Computer Science and Engineering, The Chinese University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, The Chinese University of Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004605359","display_name":"Weibin Wu","orcid":"https://orcid.org/0000-0002-7262-6219"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"HK","type":"funder","lineage":["https://openalex.org/I177725633"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Weibin Wu","raw_affiliation_strings":["Department of Computer Science and Engineering, The Chinese University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, The Chinese University of Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039127802","display_name":"Zhi Jin","orcid":"https://orcid.org/0000-0001-9670-7366"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"funder","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhi Jin","raw_affiliation_strings":["Key Laboratory of High Confidence Software Technologies (MoE), Peking University"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of High Confidence Software Technologies (MoE), Peking University","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043885374","display_name":"Sy\u2010Yen Kuo","orcid":"https://orcid.org/0000-0002-3021-8321"},"institutions":[{"id":"https://openalex.org/I16733864","display_name":"National Taiwan University","ror":"https://ror.org/05bqach95","country_code":"TW","type":"funder","lineage":["https://openalex.org/I16733864"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Sy-yen Kuo","raw_affiliation_strings":["Department of Electrical Engineering, National Taiwan University"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, National Taiwan University","institution_ids":["https://openalex.org/I16733864"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5069596903","display_name":"Michael R. Lyu","orcid":"https://orcid.org/0000-0002-3666-5798"},"institutions":[{"id":"https://openalex.org/I4210116924","display_name":"Chinese University of Hong Kong, Shenzhen","ror":"https://ror.org/02d5ks197","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633","https://openalex.org/I180726961","https://openalex.org/I4210116924"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Michael Lyu","raw_affiliation_strings":["Shenzhen Research Institute, The Chinese University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"Shenzhen Research Institute, The Chinese University of Hong Kong","institution_ids":["https://openalex.org/I4210116924"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.056,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":25,"citation_normalized_percentile":{"value":0.886766,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":null,"issue":null,"first_page":"44","last_page":"47"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11005","display_name":"Radiation Effects in Electronics","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.8995902}],"concepts":[{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.8995902},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7645352},{"id":"https://openalex.org/C63540848","wikidata":"https://www.wikidata.org/wiki/Q3140932","display_name":"Fault tolerance","level":2,"score":0.6843868},{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.680498},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6379657},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6220809},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.621959},{"id":"https://openalex.org/C152124472","wikidata":"https://www.wikidata.org/wiki/Q1204361","display_name":"Redundancy (engineering)","level":2,"score":0.60840845},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.53380686},{"id":"https://openalex.org/C34165917","wikidata":"https://www.wikidata.org/wiki/Q188267","display_name":"Programming paradigm","level":2,"score":0.4102751},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.34121048},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.1360946},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsn-w.2019.00016","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/17","display_name":"Partnerships for the goals","score":0.43}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W2097117768","https://openalex.org/W2112796928","https://openalex.org/W2135293965","https://openalex.org/W2141125852","https://openalex.org/W2163605009","https://openalex.org/W2194775991","https://openalex.org/W2607219512","https://openalex.org/W2767471303","https://openalex.org/W2963178695","https://openalex.org/W2963446712","https://openalex.org/W2963539958","https://openalex.org/W2964121744","https://openalex.org/W2969772318","https://openalex.org/W3102720581","https://openalex.org/W3196007370","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4306316843","https://openalex.org/W4300955944","https://openalex.org/W4245282135","https://openalex.org/W2170004886","https://openalex.org/W2153096481","https://openalex.org/W2148616436","https://openalex.org/W2130594209","https://openalex.org/W2108317625","https://openalex.org/W2102525122","https://openalex.org/W2036953450"],"abstract_inverted_index":{"Employing":[0],"deep":[1,38,74,161],"learning":[2,39,75,162],"algorithms":[3],"in":[4,18,174],"real-world":[5],"applications":[6],"becomes":[7],"a":[8,11,109,160],"trend.":[9],"However,":[10],"bottleneck":[12],"that":[13,82,126,151],"impedes":[14],"their":[15],"further":[16],"adoption":[17],"safety-critical":[19],"systems":[20,76],"is":[21,26,114],"the":[22,35,57,69,99,156,170,179],"reliability":[23],"issue.":[24],"It":[25],"challenging":[27],"to":[28,52,94],"develop":[29],"reliable":[30],"neural":[31,46,135],"network":[32,47,136],"models":[33,48,88,91,119,177],"as":[34],"theory":[36],"of":[37,60,71,134,159],"has":[40],"not":[41],"yet":[42],"been":[43],"well-established":[44],"and":[45,141,147],"are":[49,92],"very":[50],"sensitive":[51],"data":[53,166],"perturbations.":[54],"Inspired":[55],"by":[56,116],"classic":[58],"paradigm":[59],"N-version":[61],"programming":[62],"for":[63,98,130,167],"fault":[64],"tolerance,":[65],"this":[66,104],"paper":[67],"investigates":[68],"feasibility":[70],"developing":[72],"fault-tolerant":[73,110,157],"through":[77],"model":[78],"redundancy.":[79],"We":[80,121],"hypothesize":[81],"if":[83],"we":[84,106],"train":[85],"several":[86,123],"simplex":[87],"independently,":[89],"these":[90,118],"unlikely":[93],"produce":[95],"erroneous":[96],"results":[97,144],"same":[100],"test":[101],"cases.":[102],"In":[103],"way,":[105],"can":[107,127,154],"design":[108],"system":[111],"whose":[112],"output":[113],"determined":[115],"all":[117],"cooperatively.":[120],"propose":[122],"independence":[124],"factors":[125],"be":[128],"introduced":[129],"generating":[131,175],"multiple":[132,176],"versions":[133],"models,":[137],"including":[138],"training,":[139],"network,":[140],"data.":[142],"Experimental":[143],"on":[145],"MNIST":[146],"CIFAR-10":[148],"both":[149],"verify":[150],"our":[152],"approach":[153],"improve":[155],"ability":[158],"system.":[163],"Particularly,":[164],"independent":[165],"training":[168],"plays":[169],"most":[171],"significant":[172],"role":[173],"sharing":[178],"least":[180],"mutual":[181],"faults.":[182]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2969236120","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":6},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":2}],"updated_date":"2025-03-16T06:55:52.995525","created_date":"2019-08-29"}