{"id":"https://openalex.org/W3080890765","doi":"https://doi.org/10.1109/dsc50466.2020.00012","title":"Tweet Stance Detection: A Two-stage DC-BILSTM Model Based on Semantic Attention","display_name":"Tweet Stance Detection: A Two-stage DC-BILSTM Model Based on Semantic Attention","publication_year":2020,"publication_date":"2020-07-01","ids":{"openalex":"https://openalex.org/W3080890765","doi":"https://doi.org/10.1109/dsc50466.2020.00012","mag":"3080890765"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsc50466.2020.00012","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101238104","display_name":"Yuanyu Yang","orcid":null},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuanyu Yang","raw_affiliation_strings":["Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043114890","display_name":"Bin Wu","orcid":"https://orcid.org/0000-0001-5787-9536"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bin Wu","raw_affiliation_strings":["Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012251323","display_name":"Kai Zhao","orcid":"https://orcid.org/0000-0002-5159-2312"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kai Zhao","raw_affiliation_strings":["Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5090917310","display_name":"Guo Wen-ying","orcid":null},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenying Guo","raw_affiliation_strings":["Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.055,"has_fulltext":false,"cited_by_count":14,"citation_normalized_percentile":{"value":0.551887,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":null,"issue":null,"first_page":"22","last_page":"29"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.93507767},{"id":"https://openalex.org/keywords/encode","display_name":"ENCODE","score":0.6560338},{"id":"https://openalex.org/keywords/binary-classification","display_name":"Binary classification","score":0.57764775},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.42641327}],"concepts":[{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.93507767},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82993394},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.69917756},{"id":"https://openalex.org/C66746571","wikidata":"https://www.wikidata.org/wiki/Q1134833","display_name":"ENCODE","level":3,"score":0.6560338},{"id":"https://openalex.org/C66905080","wikidata":"https://www.wikidata.org/wiki/Q17005494","display_name":"Binary classification","level":3,"score":0.57764775},{"id":"https://openalex.org/C2779227376","wikidata":"https://www.wikidata.org/wiki/Q6505497","display_name":"Layer (electronics)","level":2,"score":0.46422786},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44711939},{"id":"https://openalex.org/C48372109","wikidata":"https://www.wikidata.org/wiki/Q3913","display_name":"Binary number","level":2,"score":0.42769408},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.42641327},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.4196698},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.3547561},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3463627},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.11553776},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.07808569},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.069781035},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsc50466.2020.00012","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W106870163","https://openalex.org/W1522301498","https://openalex.org/W1614298861","https://openalex.org/W1902237438","https://openalex.org/W2143398792","https://openalex.org/W2145327091","https://openalex.org/W2250539671","https://openalex.org/W2252133813","https://openalex.org/W2347127863","https://openalex.org/W2460159515","https://openalex.org/W2462305695","https://openalex.org/W2462738860","https://openalex.org/W2469007989","https://openalex.org/W2469195965","https://openalex.org/W2471548394","https://openalex.org/W2558412209","https://openalex.org/W2752262499","https://openalex.org/W2758621947","https://openalex.org/W2896081888","https://openalex.org/W2946133598","https://openalex.org/W2950577311","https://openalex.org/W2962767317","https://openalex.org/W2962946486","https://openalex.org/W2963067130","https://openalex.org/W2963749490","https://openalex.org/W2963811339","https://openalex.org/W2964084166","https://openalex.org/W2964121744","https://openalex.org/W2964230653"],"related_works":["https://openalex.org/W4361732492","https://openalex.org/W4313159793","https://openalex.org/W4210794429","https://openalex.org/W3099765033","https://openalex.org/W2989932438","https://openalex.org/W2953328427","https://openalex.org/W2940336242","https://openalex.org/W2767651786","https://openalex.org/W2742991909","https://openalex.org/W1996541855"],"abstract_inverted_index":{"Stance":[0],"classification":[1,86,91],"in":[2,14],"tweet":[3,12,71,108,146],"aims":[4],"at":[5],"detecting":[6],"whether":[7],"the":[8,11,95,101,107,114,118,123,142,154,178],"author":[9],"of":[10,98,125,137,145],"is":[13,109],"FAVOR":[15],"of,":[16],"AGAINST,":[17],"or":[18,111],"NONE":[19],"towards":[20],"a":[21,53,126,134],"pre-chosen":[22],"target":[23,79,149],"entity.":[24],"Recently":[25],"proposed":[26,170],"Densely":[27],"Connected":[28],"BI-LSTM":[29,68],"can":[30,152],"effectively":[31],"relieve":[32],"overfitting":[33],"and":[34,73,148,164,176],"vanishing-gradient":[35],"problems":[36,92],"as":[37,39],"well":[38],"dealing":[40],"with":[41],"long-term":[42],"dependencies":[43],"during":[44],"multi-layer":[45],"LSTM":[46,76],"training.":[47],"Based":[48],"on":[49,141,162],"this,":[50],"we":[51,82,104,121,132],"propose":[52,133],"two-stage":[54],"deep":[55],"attention":[56,138],"neural":[57],"network(T-DAN)":[58],"for":[59],"target-specific":[60],"stance":[61,124],"detection.":[62],"This":[63],"model":[64],"employs":[65],"densely":[66],"connected":[67],"to":[69,77,93,158],"encode":[70,78],"tokens":[72,147,150],"traditional":[74],"bidirectional":[75],"tokens.":[80],"Besides,":[81],"decompose":[83],"this":[84],"ternary":[85],"problem":[87],"into":[88],"two":[89],"binary":[90],"mitigating":[94],"imbalanced":[96],"distribution":[97],"labels.":[99],"In":[100,117],"first":[102],"stage,":[103,120],"find":[105],"out":[106],"neutral":[110],"subjective":[112,128],"about":[113],"specific":[115],"target.":[116,159],"second":[119],"classify":[122],"given":[127],"tweet's":[129],"stance.":[130],"Moreover,":[131],"novel":[135],"method":[136,171],"calculation":[139],"based":[140],"semantic":[143],"similarity":[144],"which":[151],"locate":[153],"crucial":[155],"words":[156],"related":[157],"Experimental":[160],"results":[161],"English":[163],"Chinese":[165],"datasets":[166],"demonstrate":[167],"that":[168],"our":[169],"surpasses":[172],"some":[173],"strong":[174],"baselines":[175],"achieves":[177],"stateof-the-art":[179],"performance.":[180]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3080890765","counts_by_year":[{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":7}],"updated_date":"2025-04-17T12:30:42.304794","created_date":"2020-09-01"}