{"id":"https://openalex.org/W3208640123","doi":"https://doi.org/10.1109/dsaa53316.2021.9564136","title":"Decoupling Autoencoders for Robust One-vs-Rest Classification","display_name":"Decoupling Autoencoders for Robust One-vs-Rest Classification","publication_year":2021,"publication_date":"2021-10-06","ids":{"openalex":"https://openalex.org/W3208640123","doi":"https://doi.org/10.1109/dsaa53316.2021.9564136","mag":"3208640123"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsaa53316.2021.9564136","pdf_url":null,"source":{"id":"https://openalex.org/S4363608340","display_name":"2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5039510770","display_name":"Max L\u00fcbbering","orcid":"https://orcid.org/0000-0001-6291-9459"},"institutions":[{"id":"https://openalex.org/I4210144576","display_name":"Fraunhofer Institute for Intelligent Analysis and Information Systems","ror":"https://ror.org/04nc32781","country_code":"DE","type":"facility","lineage":["https://openalex.org/I4210144576","https://openalex.org/I4923324"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Max Lubbering","raw_affiliation_strings":["Fraunhofer IAIS, Sankt Augustin, Germany"],"affiliations":[{"raw_affiliation_string":"Fraunhofer IAIS, Sankt Augustin, Germany","institution_ids":["https://openalex.org/I4210144576"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003539327","display_name":"Michael Gebauer","orcid":"https://orcid.org/0000-0003-1107-741X"},"institutions":[{"id":"https://openalex.org/I4577782","display_name":"Technische Universit\u00e4t Berlin","ror":"https://ror.org/03v4gjf40","country_code":"DE","type":"education","lineage":["https://openalex.org/I4577782"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Michael Gebauer","raw_affiliation_strings":["TU Berlin - ISE, Berlin, Germany"],"affiliations":[{"raw_affiliation_string":"TU Berlin - ISE, Berlin, Germany","institution_ids":["https://openalex.org/I4577782"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035886948","display_name":"Rajkumar Ramamurthy","orcid":null},"institutions":[{"id":"https://openalex.org/I4210144576","display_name":"Fraunhofer Institute for Intelligent Analysis and Information Systems","ror":"https://ror.org/04nc32781","country_code":"DE","type":"facility","lineage":["https://openalex.org/I4210144576","https://openalex.org/I4923324"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Rajkumar Ramamurthy","raw_affiliation_strings":["Fraunhofer IAIS, Sankt Augustin, Germany"],"affiliations":[{"raw_affiliation_string":"Fraunhofer IAIS, Sankt Augustin, Germany","institution_ids":["https://openalex.org/I4210144576"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003875445","display_name":"Christian Bauckhage","orcid":"https://orcid.org/0000-0001-6615-2128"},"institutions":[{"id":"https://openalex.org/I4210144576","display_name":"Fraunhofer Institute for Intelligent Analysis and Information Systems","ror":"https://ror.org/04nc32781","country_code":"DE","type":"facility","lineage":["https://openalex.org/I4210144576","https://openalex.org/I4923324"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Christian Bauckhage","raw_affiliation_strings":["Fraunhofer IAIS, Sankt Augustin, Germany"],"affiliations":[{"raw_affiliation_string":"Fraunhofer IAIS, Sankt Augustin, Germany","institution_ids":["https://openalex.org/I4210144576"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5064201630","display_name":"Rafet Sifa","orcid":"https://orcid.org/0009-0004-6680-8210"},"institutions":[{"id":"https://openalex.org/I4210144576","display_name":"Fraunhofer Institute for Intelligent Analysis and Information Systems","ror":"https://ror.org/04nc32781","country_code":"DE","type":"facility","lineage":["https://openalex.org/I4210144576","https://openalex.org/I4923324"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Rafet Sifa","raw_affiliation_strings":["Fraunhofer IAIS, Sankt Augustin, Germany"],"affiliations":[{"raw_affiliation_string":"Fraunhofer IAIS, Sankt Augustin, Germany","institution_ids":["https://openalex.org/I4210144576"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.305,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.305691,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"10"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.71581894},{"id":"https://openalex.org/keywords/perceptron","display_name":"Perceptron","score":0.5203254},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.4630217},{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting","score":0.44527748}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7472577},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.71581894},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.6950222},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6688876},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.53052795},{"id":"https://openalex.org/C60908668","wikidata":"https://www.wikidata.org/wiki/Q690207","display_name":"Perceptron","level":3,"score":0.5203254},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48739344},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.4630217},{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.44527748},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33698982},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.2837907},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsaa53316.2021.9564136","pdf_url":null,"source":{"id":"https://openalex.org/S4363608340","display_name":"2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":73,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W159036455","https://openalex.org/W1598033630","https://openalex.org/W1622922661","https://openalex.org/W1636210188","https://openalex.org/W1663973292","https://openalex.org/W1703735685","https://openalex.org/W1876967670","https://openalex.org/W1932198206","https://openalex.org/W1945616565","https://openalex.org/W1959608418","https://openalex.org/W1966716734","https://openalex.org/W1976526581","https://openalex.org/W2009086942","https://openalex.org/W2049058890","https://openalex.org/W2073241381","https://openalex.org/W2105497548","https://openalex.org/W2126214330","https://openalex.org/W2141007997","https://openalex.org/W2158698691","https://openalex.org/W2194775991","https://openalex.org/W2250539671","https://openalex.org/W2254249950","https://openalex.org/W2338990760","https://openalex.org/W2340896621","https://openalex.org/W2462906003","https://openalex.org/W2531327146","https://openalex.org/W2599354622","https://openalex.org/W2626967530","https://openalex.org/W2730536421","https://openalex.org/W2786712888","https://openalex.org/W2789159078","https://openalex.org/W2803697594","https://openalex.org/W2807998381","https://openalex.org/W2902240649","https://openalex.org/W2904981516","https://openalex.org/W2913905997","https://openalex.org/W2913948174","https://openalex.org/W2919115771","https://openalex.org/W2948805184","https://openalex.org/W2951883849","https://openalex.org/W2955169411","https://openalex.org/W2962791923","https://openalex.org/W2963207607","https://openalex.org/W2963238274","https://openalex.org/W2964121744","https://openalex.org/W2964212410","https://openalex.org/W2970232071","https://openalex.org/W2970597249","https://openalex.org/W2971118045","https://openalex.org/W2987920886","https://openalex.org/W2994088087","https://openalex.org/W3037355691","https://openalex.org/W3041385406","https://openalex.org/W3097433529","https://openalex.org/W3098957257","https://openalex.org/W3100308096","https://openalex.org/W3112501082","https://openalex.org/W3113634999","https://openalex.org/W3123454130","https://openalex.org/W3133277197","https://openalex.org/W3148140980","https://openalex.org/W3196898581","https://openalex.org/W3209383403","https://openalex.org/W3212464620","https://openalex.org/W4235091326","https://openalex.org/W4288245943","https://openalex.org/W4288335398","https://openalex.org/W4288420159","https://openalex.org/W4289293306","https://openalex.org/W4293321333","https://openalex.org/W4298289240","https://openalex.org/W51582649"],"related_works":["https://openalex.org/W4297051394","https://openalex.org/W4239608116","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2752972570","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2122216001","https://openalex.org/W2002382339"],"abstract_inverted_index":{"One-vs-Rest":[0],"(OVR)":[1],"classification":[2,150],"aims":[3],"to":[4,21,42,60,95,103,108,113,148],"distinguish":[5],"a":[6,53],"single":[7],"class":[8,34],"of":[9,16,31,65,157],"interest":[10],"from":[11,36],"other":[12],"classes.":[13,47],"The":[14],"concept":[15],"novelty":[17],"detection":[18,128,160],"and":[19,44,80,89,118,129,161],"robustness":[20,66],"dataset":[22,90,114,130,162],"shift":[23,91,131,163],"becomes":[24],"crucial":[25],"in":[26,73],"OVR":[27],"when":[28,111],"the":[29,32,37,62,104,119,126,149,155,158],"scope":[30],"rest":[33],"extends":[35],"classes":[38],"observed":[39],"during":[40],"training":[41],"unseen":[43],"possibly":[45],"unrelated":[46],"In":[48],"this":[49],"work,":[50],"we":[51,133],"propose":[52],"novel":[54],"architecture,":[55],"namely":[56],"Decoupling":[57],"Autoencoder":[58],"(DAE)":[59],"tackle":[61],"common":[63],"issue":[64],"w.r.t.":[67],"out-of-distribution":[68],"samples":[69],"which":[70,106],"is":[71,138],"prevalent":[72],"classifiers":[74],"such":[75],"as":[76],"multi-layer":[77],"perceptrons":[78],"(MLP)":[79],"ensemble":[81],"architectures.":[82],"Experiments":[83],"on":[84,125],"plain":[85],"classification,":[86],"outlier":[87,127,159],"detection,":[88],"tasks":[92,101],"show":[93],"DAE":[94,117,136],"achieve":[96],"robust":[97],"performance":[98],"across":[99,141],"these":[100],"compared":[102],"baselines,":[105],"tend":[107],"fail":[109],"completely,":[110],"exposed":[112],"shift.":[115],"While":[116],"baselines":[120],"yield":[121],"rather":[122],"uncalibrated":[123],"predictions":[124],"task,":[132],"found":[134],"that":[135],"calibration":[137,145,156],"more":[139],"stable":[140],"all":[142],"tasks.":[143],"Therefore,":[144],"measures":[146],"applied":[147],"task":[151],"could":[152],"also":[153],"improve":[154],"scenarios":[164],"for":[165],"DAE.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3208640123","counts_by_year":[{"year":2022,"cited_by_count":3}],"updated_date":"2024-12-11T08:34:39.393573","created_date":"2021-11-08"}