{"id":"https://openalex.org/W2184806627","doi":"https://doi.org/10.1109/dsaa.2015.7344904","title":"TESS: Temporal event sequence summarization","display_name":"TESS: Temporal event sequence summarization","publication_year":2015,"publication_date":"2015-10-01","ids":{"openalex":"https://openalex.org/W2184806627","doi":"https://doi.org/10.1109/dsaa.2015.7344904","mag":"2184806627"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsaa.2015.7344904","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022119069","display_name":"Dominique Gay","orcid":"https://orcid.org/0000-0002-0671-4616"},"institutions":[{"id":"https://openalex.org/I19370010","display_name":"Orange (France)","ror":"https://ror.org/035j0tq82","country_code":"FR","type":"funder","lineage":["https://openalex.org/I19370010"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Dominique Gay","raw_affiliation_strings":["Orange Labs, Lannion, France"],"affiliations":[{"raw_affiliation_string":"Orange Labs, Lannion, France","institution_ids":["https://openalex.org/I19370010"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035622105","display_name":"Romain Guigour\u00e8s","orcid":null},"institutions":[],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Romain Guigoures","raw_affiliation_strings":["Zalando, Berlin, Germany"],"affiliations":[{"raw_affiliation_string":"Zalando, Berlin, Germany","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111936967","display_name":"Marc Boull\u00e9","orcid":null},"institutions":[{"id":"https://openalex.org/I19370010","display_name":"Orange (France)","ror":"https://ror.org/035j0tq82","country_code":"FR","type":"funder","lineage":["https://openalex.org/I19370010"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Marc Boulle","raw_affiliation_strings":["Orange Labs, Lannion, France"],"affiliations":[{"raw_affiliation_string":"Orange Labs, Lannion, France","institution_ids":["https://openalex.org/I19370010"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5087132141","display_name":"Fabrice Cl\u00e9rot","orcid":null},"institutions":[{"id":"https://openalex.org/I19370010","display_name":"Orange (France)","ror":"https://ror.org/035j0tq82","country_code":"FR","type":"funder","lineage":["https://openalex.org/I19370010"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Fabrice Clerot","raw_affiliation_strings":["Orange Labs, Lannion, France"],"affiliations":[{"raw_affiliation_string":"Orange Labs, Lannion, France","institution_ids":["https://openalex.org/I19370010"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.414,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.45458,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"10"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/univariate","display_name":"Univariate","score":0.43951076},{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.43686908}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5701425},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.55187917},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.5420104},{"id":"https://openalex.org/C187691185","wikidata":"https://www.wikidata.org/wiki/Q2020720","display_name":"Grid","level":2,"score":0.48189455},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4816943},{"id":"https://openalex.org/C199163554","wikidata":"https://www.wikidata.org/wiki/Q1681619","display_name":"Univariate","level":3,"score":0.43951076},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.43686908},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37528336},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36872575},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3181578},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.19531485},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.17728823},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsaa.2015.7344904","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W148444222","https://openalex.org/W1485904109","https://openalex.org/W1686946872","https://openalex.org/W1980293091","https://openalex.org/W1988197914","https://openalex.org/W1998491255","https://openalex.org/W2025605164","https://openalex.org/W2036328877","https://openalex.org/W2036432167","https://openalex.org/W2069657950","https://openalex.org/W2079748062","https://openalex.org/W2087106341","https://openalex.org/W2106503116","https://openalex.org/W2147107544","https://openalex.org/W2154122057","https://openalex.org/W2166064672","https://openalex.org/W2979454998","https://openalex.org/W4242399520","https://openalex.org/W4255387915"],"related_works":["https://openalex.org/W2911841387","https://openalex.org/W2803255289","https://openalex.org/W2550734047","https://openalex.org/W2341571017","https://openalex.org/W2176526134","https://openalex.org/W2047547195","https://openalex.org/W204175656","https://openalex.org/W1993992974","https://openalex.org/W1828158523","https://openalex.org/W1512294453"],"abstract_inverted_index":{"We":[0,168],"suggest":[1,170],"a":[2,38,51,54,100,108,116,162],"novel":[3],"method":[4],"of":[5,10,30,41,95,103,110,119,123,142,149,185,217],"clustering":[6],"and":[7,57,86,112,127,144,187,199,210],"exploratory":[8],"analysis":[9],"temporal":[11,31,218],"event":[12,32,59,219],"sequences":[13,33,74,132,186],"data":[14,24,28,39,62,157,201],"(also":[15],"known":[16],"as":[17,37],"categorical":[18],"time":[19,55,80,126,143,153],"series)":[20],"based":[21],"on":[22,196],"three-dimensional":[23,42],"grid":[25,63,109,158,177],"models.":[26],"A":[27],"set":[29,40],"can":[34],"be":[35],"represented":[36],"points,":[43],"each":[44],"point":[45],"is":[46,82,159,207],"defined":[47],"by":[48],"three":[49],"variables:":[50],"sequence":[52],"identifier,":[53],"value":[56],"an":[58],"value.":[60],"Instantiating":[61],"models":[64],"to":[65],"the":[66,69,79,87,96,104,120,124,131,152,175,183],"3D-points":[67],"turns":[68],"problem":[70],"into":[71,77,84,91],"3D-coclustering.":[72],"The":[73,93,155],"are":[75,89,133],"partitioned":[76,90],"clusters,":[78],"variable":[81],"discretized":[83],"intervals":[85],"events":[88,128,150],"clusters.":[92],"cross-product":[94],"univariate":[97],"partitions":[98],"forms":[99],"multivariate":[101],"partition":[102],"representation":[105],"space,":[106],"i.e.,":[107,146],"cells":[111],"it":[113],"also":[114,169],"represents":[115],"nonparametric":[117],"estimator":[118],"joint":[121,140],"distribution":[122,141,148],"sequences,":[125],"dimensions.":[129],"Thus,":[130],"grouped":[134],"together":[135],"because":[136],"they":[137],"have":[138],"similar":[139,147],"events,":[145],"along":[151],"dimension.":[154],"best":[156],"computed":[160],"using":[161],"parameter-free":[163],"Bayesian":[164],"model":[165],"selection":[166],"approach.":[167],"several":[171],"criteria":[172],"for":[173,181],"exploiting":[174],"resulting":[176],"through":[178,191],"agglomerative":[179],"hierarchies,":[180],"interpreting":[182],"clusters":[184],"characterizing":[188],"their":[189],"components":[190],"insightful":[192],"visualizations.":[193],"Extensive":[194],"experiments":[195],"both":[197],"synthetic":[198],"real-world":[200],"sets":[202,216],"demonstrate":[203],"that":[204],"our":[205],"approach":[206],"efficient,":[208],"effective":[209],"discover":[211],"meaningful":[212],"underlying":[213],"patterns":[214],"in":[215],"sequences.":[220]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2184806627","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":1}],"updated_date":"2025-03-19T14:28:22.382095","created_date":"2016-06-24"}