{"id":"https://openalex.org/W4379115525","doi":"https://doi.org/10.1109/ddecs57882.2023.10139724","title":"Prediction of Inference Energy on CNN Accelerators Supporting Approximate Circuits","display_name":"Prediction of Inference Energy on CNN Accelerators Supporting Approximate Circuits","publication_year":2023,"publication_date":"2023-05-03","ids":{"openalex":"https://openalex.org/W4379115525","doi":"https://doi.org/10.1109/ddecs57882.2023.10139724"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ddecs57882.2023.10139724","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5046420568","display_name":"Michal Pi\u0148os","orcid":null},"institutions":[{"id":"https://openalex.org/I60587646","display_name":"Brno University of Technology","ror":"https://ror.org/03613d656","country_code":"CZ","type":"education","lineage":["https://openalex.org/I60587646"]}],"countries":["CZ"],"is_corresponding":false,"raw_author_name":"Michal Pinos","raw_affiliation_strings":["Brno University of Technology, Brno, Czech Republic"],"affiliations":[{"raw_affiliation_string":"Brno University of Technology, Brno, Czech Republic","institution_ids":["https://openalex.org/I60587646"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071584701","display_name":"Vojt\u011bch Mr\u00e1zek","orcid":"https://orcid.org/0000-0002-9399-9313"},"institutions":[{"id":"https://openalex.org/I60587646","display_name":"Brno University of Technology","ror":"https://ror.org/03613d656","country_code":"CZ","type":"education","lineage":["https://openalex.org/I60587646"]}],"countries":["CZ"],"is_corresponding":false,"raw_author_name":"Vojtech Mrazek","raw_affiliation_strings":["Brno University of Technology, Brno, Czech Republic"],"affiliations":[{"raw_affiliation_string":"Brno University of Technology, Brno, Czech Republic","institution_ids":["https://openalex.org/I60587646"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055549968","display_name":"Luk\u00e1\u0161 Sekanina","orcid":"https://orcid.org/0000-0002-2693-9011"},"institutions":[{"id":"https://openalex.org/I60587646","display_name":"Brno University of Technology","ror":"https://ror.org/03613d656","country_code":"CZ","type":"education","lineage":["https://openalex.org/I60587646"]}],"countries":["CZ"],"is_corresponding":false,"raw_author_name":"Lukas Sekanina","raw_affiliation_strings":["Brno University of Technology, Brno, Czech Republic"],"affiliations":[{"raw_affiliation_string":"Brno University of Technology, Brno, Czech Republic","institution_ids":["https://openalex.org/I60587646"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.325,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.588886,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":68,"max":79},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10363","display_name":"Low-power high-performance VLSI design","score":0.995,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hardware-acceleration","display_name":"Hardware acceleration","score":0.50611585}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.783849},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.76214945},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.73981285},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.5842691},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5235141},{"id":"https://openalex.org/C13164978","wikidata":"https://www.wikidata.org/wiki/Q600158","display_name":"Hardware acceleration","level":3,"score":0.50611585},{"id":"https://openalex.org/C2777904410","wikidata":"https://www.wikidata.org/wiki/Q7397","display_name":"Software","level":2,"score":0.47235048},{"id":"https://openalex.org/C134146338","wikidata":"https://www.wikidata.org/wiki/Q1815901","display_name":"Electronic circuit","level":2,"score":0.45746428},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.43306854},{"id":"https://openalex.org/C186370098","wikidata":"https://www.wikidata.org/wiki/Q442787","display_name":"Energy (signal processing)","level":2,"score":0.43077558},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39581272},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33973265},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33622357},{"id":"https://openalex.org/C42935608","wikidata":"https://www.wikidata.org/wiki/Q190411","display_name":"Field-programmable gate array","level":2,"score":0.30608594},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.2974193},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.11585164},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10661474},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ddecs57882.2023.10139724","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy","score":0.89}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W2194775991","https://openalex.org/W2289252105","https://openalex.org/W2612139336","https://openalex.org/W2871705258","https://openalex.org/W2895540242","https://openalex.org/W2940862705","https://openalex.org/W2958306322","https://openalex.org/W2964259004","https://openalex.org/W2980104813","https://openalex.org/W2998732502","https://openalex.org/W3005346446","https://openalex.org/W3035130950","https://openalex.org/W3083257207","https://openalex.org/W3098316065","https://openalex.org/W3099432326","https://openalex.org/W3112293503","https://openalex.org/W3131592046","https://openalex.org/W3210705689","https://openalex.org/W3213229701","https://openalex.org/W4280606772","https://openalex.org/W4293052786","https://openalex.org/W4300171661"],"related_works":["https://openalex.org/W4388913998","https://openalex.org/W4319952061","https://openalex.org/W4310584535","https://openalex.org/W4307927141","https://openalex.org/W4295935044","https://openalex.org/W4280636456","https://openalex.org/W4225949190","https://openalex.org/W3159906349","https://openalex.org/W3159273459","https://openalex.org/W2518118925"],"abstract_inverted_index":{"Design":[0],"methodologies":[1],"developed":[2],"for":[3,14,35,172],"optimizing":[4],"hardware":[5,28,42,80],"implementations":[6],"of":[7,26,44,76,82,145,157],"convolutional":[8],"neural":[9,17,196],"networks":[10,146],"(CNN)":[11],"or":[12],"searching":[13],"new":[15,50],"hardware-aware":[16],"architectures":[18,192],"rely":[19],"on":[20,167,205],"the":[21,32,47,71,95,104,120,126,169,178,182],"fast":[22,72],"and":[23,73,100,134,140,142,151],"reliable":[24],"estimation":[25],"key":[27],"parameters,":[29],"such":[30,88],"as":[31,89],"energy":[33,78,106],"needed":[34,171],"one":[36],"inference.":[37],"Utilizing":[38],"approximate":[39,65,86,90,114],"circuits":[40,87],"in":[41,79],"accelerators":[43,81,138],"CNNs":[45,83,189],"faces":[46],"designers":[48],"with":[49,112,177,190],"problems":[51],"during":[52],"their":[53],"simulation":[54],"\u2014":[55],"commonly":[56],"used":[57],"tools":[58,122],"(TimeLoop,":[59],"Accelergy,":[60],"Maestro)":[61],"do":[62],"not":[63],"support":[64],"arithmetic":[66],"operations.":[67],"This":[68],"work":[69],"addresses":[70],"efficient":[74],"prediction":[75],"consumed":[77],"that":[84,162],"utilize":[85],"multipliers.":[91],"First,":[92],"we":[93,132],"extend":[94],"state-of-the-art":[96],"software":[97],"frameworks":[98],"TimeLoop":[99],"Accelergy":[101],"to":[102,211],"predict":[103],"inference":[105,158],"when":[107],"exact":[108],"multipliers":[109],"are":[110,123,217],"replaced":[111],"various":[113],"implementations.":[115],"The":[116,214],"energies":[117,170],"obtained":[118],"using":[119,136],"modified":[121],"then":[124],"considered":[125],"ground":[127],"truth":[128],"(reference)":[129],"values.":[130],"Then,":[131],"propose":[133],"evaluate,":[135],"two":[137,143,155],"(Eyeriss":[139],"Simba)":[141],"types":[144],"(CNNs":[147],"generated":[148,194],"by":[149,195],"EvoApproxNAS":[150],"standard":[152],"ResNet":[153],"CNNs),":[154],"predictors":[156,216],"energy.":[159],"We":[160],"conclude":[161],"a":[163,200,206],"simple":[164],"predictor":[165,203],"based":[166,204],"summing":[168],"all":[173],"multiplications":[174],"highly":[175],"correlates":[176],"reference":[179,221],"values":[180],"if":[181],"CNN's":[183],"architecture":[184,197],"is":[185],"fixed.":[186],"For":[187],"complex":[188],"variable":[191],"typically":[193],"search":[198],"algorithms,":[199],"more":[201],"sophisticated":[202],"machine":[207],"learning":[208],"model":[209],"has":[210],"be":[212],"employed.":[213],"proposed":[215],"420-533\u00d7":[218],"faster":[219],"than":[220],"solutions.":[222]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4379115525","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-12-06T19:30:14.685897","created_date":"2023-06-03"}