{"id":"https://openalex.org/W4385804940","doi":"https://doi.org/10.1109/cvprw59228.2023.00191","title":"A Single Residual Network with ESA Modules and Distillation","display_name":"A Single Residual Network with ESA Modules and Distillation","publication_year":2023,"publication_date":"2023-06-01","ids":{"openalex":"https://openalex.org/W4385804940","doi":"https://doi.org/10.1109/cvprw59228.2023.00191"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw59228.2023.00191","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022757953","display_name":"Yucong Wang","orcid":"https://orcid.org/0000-0001-7727-0939"},"institutions":[{"id":"https://openalex.org/I16609230","display_name":"Hunan University","ror":"https://ror.org/05htk5m33","country_code":"CN","type":"education","lineage":["https://openalex.org/I16609230"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yucong Wang","raw_affiliation_strings":["College of Computer Science and Electronic Engineering, Hunan University"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Electronic Engineering, Hunan University","institution_ids":["https://openalex.org/I16609230"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5076011239","display_name":"Minjie Cai","orcid":"https://orcid.org/0000-0002-6688-3710"},"institutions":[{"id":"https://openalex.org/I16609230","display_name":"Hunan University","ror":"https://ror.org/05htk5m33","country_code":"CN","type":"education","lineage":["https://openalex.org/I16609230"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Minjie Cai","raw_affiliation_strings":["College of Computer Science and Electronic Engineering, Hunan University"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Electronic Engineering, Hunan University","institution_ids":["https://openalex.org/I16609230"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.548,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.999956,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":79,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"1971","last_page":"1981"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/flops","display_name":"FLOPS","score":0.7097829},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.61085296}],"concepts":[{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.9085338},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75847864},{"id":"https://openalex.org/C3826847","wikidata":"https://www.wikidata.org/wiki/Q188768","display_name":"FLOPS","level":2,"score":0.7097829},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6726595},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.61085296},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.4986918},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.43108034},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.42199326},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4188334},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35536453},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.1624541},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15792486},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.15491706},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw59228.2023.00191","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1791560514","https://openalex.org/W1821462560","https://openalex.org/W1930824406","https://openalex.org/W2047920195","https://openalex.org/W2110158442","https://openalex.org/W2194775991","https://openalex.org/W2214802144","https://openalex.org/W2242218935","https://openalex.org/W2503339013","https://openalex.org/W2747898905","https://openalex.org/W2866634454","https://openalex.org/W2950217418","https://openalex.org/W2954930822","https://openalex.org/W2963372104","https://openalex.org/W2963420686","https://openalex.org/W2971595222","https://openalex.org/W2976718572","https://openalex.org/W3011005573","https://openalex.org/W3034247386","https://openalex.org/W3035467803","https://openalex.org/W3096739052","https://openalex.org/W3107716502","https://openalex.org/W3110378228","https://openalex.org/W3133953507","https://openalex.org/W3135420168","https://openalex.org/W3171125843","https://openalex.org/W3174531399","https://openalex.org/W3190446228","https://openalex.org/W3206130237","https://openalex.org/W3207918547","https://openalex.org/W4221160909","https://openalex.org/W4224209592","https://openalex.org/W4280491778","https://openalex.org/W4280581786","https://openalex.org/W4280626040","https://openalex.org/W4297775537","https://openalex.org/W4312400283","https://openalex.org/W4385805159","https://openalex.org/W4385815481","https://openalex.org/W4386083034","https://openalex.org/W54257720","https://openalex.org/W935139217"],"related_works":["https://openalex.org/W4315697128","https://openalex.org/W4280599700","https://openalex.org/W3205506801","https://openalex.org/W3183570023","https://openalex.org/W3102845713","https://openalex.org/W3095334494","https://openalex.org/W2995343971","https://openalex.org/W2992221004","https://openalex.org/W2982536526","https://openalex.org/W2971502891"],"abstract_inverted_index":{"Although":[0],"there":[1],"are":[2],"many":[3],"methods":[4],"based":[5],"on":[6,13,26,40,67,132],"deep":[7],"learning":[8],"that":[9,37,121],"have":[10,35,128],"superior":[11],"performance":[12,105,160,222],"single":[14,84],"image":[15],"super-resolution":[16],"(SISR),":[17],"it":[18],"is":[19,70,145],"difficult":[20],"to":[21,94,102],"run":[22,265],"in":[23,61,123,296],"real":[24],"time":[25,57,287],"devices":[27],"with":[28,109,134],"limited":[29],"computing":[30],"power.":[31],"Some":[32],"recent":[33],"studies":[34],"found":[36],"simply":[38],"relying":[39],"reducing":[41,44],"parameters":[42],"or":[43],"the":[45,49,55,59,68,89,104,107,116,138,141,151,154,159,162,167,172,178,184,188,197,206,210,214,218,221,224,231,235,269,278,284,291,297],"theoretical":[46],"FLOPs":[47],"of":[48,58,106,140,153,161,169,174,177,213,223,281,294],"model":[50,180,199,240],"does":[51],"not":[52,127,148],"speed":[53,66,113,152],"up":[54],"inference":[56,232,286],"network":[60,86,108,142,225],"a":[62,72,82,110,129,253,273],"practical":[63],"sense.":[64],"Actual":[65],"device":[69],"probably":[71],"better":[73],"measure":[74],"than":[75,244,268],"FLOPs.":[76],"In":[77],"this":[78,193],"work,":[79],"we":[80,92,119,165,251],"propose":[81],"new":[83],"residual":[85,124,139,143,175],"(SRN).":[87],"On":[88,115],"one":[90],"hand,":[91,118],"try":[93],"introduce":[95],"and":[96,171,182,200,217,255,259],"optimize":[97],"an":[98,249],"attention":[99],"mechanism":[100],"module":[101],"improve":[103],"relatively":[111],"small":[112,261],"loss.":[114],"other":[117],"find":[120],"residuals":[122],"blocks":[125,176],"do":[126],"positive":[130],"impact":[131],"networks":[133],"adjusted":[135],"ESA.":[136],"Therefore,":[137],"block":[144],"removed,":[146],"which":[147,264],"only":[149],"improves":[150,158],"network,":[155],"but":[156],"also":[157],"network.":[163],"Finally,":[164],"reduced":[166],"number":[168,173,293],"channels":[170],"classic":[179],"EDSR,":[181],"removed":[183],"last":[185],"convolution":[186],"before":[187],"long":[189],"residual.":[190],"We":[191],"set":[192],"tuned":[194],"EDSR":[195],"as":[196,205,288,290],"teacher":[198],"our":[201,238],"newly":[202],"proposed":[203,239],"SRN":[204],"student":[207],"model.":[208],"Under":[209],"joint":[211],"effect":[212],"original":[215],"loss":[216],"distillation":[219],"loss,":[220],"can":[226],"be":[227,302],"improved":[228],"without":[229],"losing":[230],"time.":[233],"Combining":[234],"above":[236],"strategies,":[237],"runs":[241],"much":[242],"faster":[243,267],"similarly":[245],"performing":[246],"models.":[247],"As":[248],"example,":[250],"built":[252],"Fast":[254],"Efficient":[256],"Network":[257],"(SRN)":[258],"its":[260],"version":[262,280],"SRN-S,":[263],"30%-37%":[266],"state-of-the-art":[270],"EISR":[271],"model:":[272],"paper":[274],"champion":[275],"RLFN.":[276],"Furthermore,":[277],"shallow":[279],"SRN-S":[282],"achieves":[283],"second-shortest":[285],"well":[289],"second-smallest":[292],"activations":[295],"NTIRE2023":[298],"challenge.":[299],"Code":[300],"will":[301],"available":[303],"at":[304],"https://github.com/wnxbwyc/SRN.":[305]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385804940","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-13T17:58:43.697824","created_date":"2023-08-15"}